@article{10_1090_S0894_0347_97_00233_6,
author = {Volberg, A.},
title = {Matrix {\ensuremath{\mathit{A}}_{\ensuremath{\mathit{p}}}} weights via {\ensuremath{\mathit{S}}-functions}},
journal = {Journal of the American Mathematical Society},
pages = {445--466},
year = {1997},
volume = {10},
number = {2},
doi = {10.1090/S0894-0347-97-00233-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00233-6/}
}
TY - JOUR
AU - Volberg, A.
TI - Matrix 𝐴_{𝑝} weights via 𝑆-functions
JO - Journal of the American Mathematical Society
PY - 1997
SP - 445
EP - 466
VL - 10
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00233-6/
DO - 10.1090/S0894-0347-97-00233-6
ID - 10_1090_S0894_0347_97_00233_6
ER -
Volberg, A. Matrix 𝐴_{𝑝} weights via 𝑆-functions. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 445-466. doi: 10.1090/S0894-0347-97-00233-6
[1] , , Products of Toeplitz operators Integral Equations Operator Theory 1978 285 309
[2] A commutator theorem and weighted BMO Trans. Amer. Math. Soc. 1985 103 122
[3] Applications of commutator theory to weighted BMO and matrix analogs of 𝐴₂ Illinois J. Math. 1989 464 487
[4] , Distribution function inequalities for the area integral Studia Math. 1972 527 544
[5] Explorations in martingale theory and its applications 1991 1 66
[6] A proof of Pełczynśki’s conjecture for the Haar system Studia Math. 1988 79 83
[7] Boundary value problems and sharp inequalities for martingale transforms Ann. Probab. 1984 647 702
[8] Summation conditions on weights Michigan Math. J. 1993 153 170
[9] Estimates for operator norms on weighted spaces and reverse Jensen inequalities Trans. Amer. Math. Soc. 1993 253 272
[10] , , Littlewood-Paley theory and the study of function spaces 1991
[11] , , The theory of weights and the Dirichlet problem for elliptic equations Ann. of Math. (2) 1991 65 124
[12] , Weighted norm inequalities and related topics 1985
[13] Treatise on the shift operator 1986
[14] Exposed points in 𝐻¹. II 1990 333 347
[15] Linear and complex analysis. Problem book 3. Part I 1994
[16] The Riemann boundary-value problem for 𝑛 pairs of functions with measurable coefficients and its application to the study of singular integrals in 𝐿_{𝑝} spaces with weights Izv. Akad. Nauk SSSR Ser. Mat. 1964 277 306
[17] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
[18] The method of successive approximations for functional equations Acta Math. 1939 63 97
Cité par Sources :