Maximal degeneracy points of GKZ systems
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 427-443

Voir la notice de l'article provenant de la source American Mathematical Society

Motivated by mirror symmetry, we study certain integral representations of solutions to the Gel$^\prime$fand-Kapranov-Zelevinsky (GKZ) hypergeometric system. Some of these solutions arise as period integrals for Calabi-Yau manifolds in mirror symmetry. We prove that for a suitable compactification of the parameter space, there exist certain special boundary points, which we called maximal degeneracy points, at which all solutions but one become singular.
DOI : 10.1090/S0894-0347-97-00230-0

Hosono, S. 1 ; Lian, B. 2 ; Yau, S.-T. 3

1 Department of Mathematics, Toyama University, Toyama 930, Japan
2 Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154
3 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_97_00230_0,
     author = {Hosono, S. and Lian, B. and Yau, S.-T.},
     title = {Maximal degeneracy points of {GKZ} systems},
     journal = {Journal of the American Mathematical Society},
     pages = {427--443},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00230-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00230-0/}
}
TY  - JOUR
AU  - Hosono, S.
AU  - Lian, B.
AU  - Yau, S.-T.
TI  - Maximal degeneracy points of GKZ systems
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 427
EP  - 443
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00230-0/
DO  - 10.1090/S0894-0347-97-00230-0
ID  - 10_1090_S0894_0347_97_00230_0
ER  - 
%0 Journal Article
%A Hosono, S.
%A Lian, B.
%A Yau, S.-T.
%T Maximal degeneracy points of GKZ systems
%J Journal of the American Mathematical Society
%D 1997
%P 427-443
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00230-0/
%R 10.1090/S0894-0347-97-00230-0
%F 10_1090_S0894_0347_97_00230_0
Hosono, S.; Lian, B.; Yau, S.-T. Maximal degeneracy points of GKZ systems. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 427-443. doi: 10.1090/S0894-0347-97-00230-0

[1] Batyrev, Victor V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties J. Algebraic Geom. 1994 493 535

[2] Batyrev, Victor V. Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori Duke Math. J. 1993 349 409

[3] Billera, Louis J., Filliman, Paul, Sturmfels, Bernd Constructions and complexity of secondary polytopes Adv. Math. 1990 155 179

[4] Candelas, Philip, De La Ossa, Xenia C., Green, Paul S., Parkes, Linda A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory Nuclear Phys. B 1991 21 74

[5] Candelas, Philip, De La Ossa, Xenia, Font, Anamarã­A, Katz, Sheldon, Morrison, David R. Mirror symmetry for two-parameter models. I Nuclear Phys. B 1994 481 538

[6] Candelas, Philip, Font, Anamarã­A, Katz, Sheldon, Morrison, David R. Mirror symmetry for two-parameter models. II Nuclear Phys. B 1994 626 674

[7] Cox, David, Little, John, O’Shea, Donal Ideals, varieties, and algorithms 1992

[8] Font, Anamarã­A Periods and duality symmetries in Calabi-Yau compactifications Nuclear Phys. B 1993 358 388

[9] Fulton, William Introduction to toric varieties 1993

[10] Gel′Fand, I. M., Zelevinskiä­, A. V., Kapranov, M. M. Hypergeometric functions and toric varieties Funktsional. Anal. i Prilozhen. 1989 12 26

[11] Gel′Fand, I. M., Kapranov, M. M., Zelevinsky, A. V. Newton polytopes of the classical resultant and discriminant Adv. Math. 1990 237 254

[12] Greene, B. R., Plesser, M. R. Duality in Calabi-Yau moduli space Nuclear Phys. B 1990 15 37

[13] Hosono, S., Klemm, A., Theisen, S., Yau, S.-T. Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces Comm. Math. Phys. 1995 301 350

[14] Hosono, S., Klemm, A., Theisen, S., Yau, S.-T. Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces Nuclear Phys. B 1995 501 552

[15] Klemm, Albrecht, Theisen, Stefan Considerations of one-modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler potentials and mirror maps Nuclear Phys. B 1993 153 180

[16] Morrison, David R. Picard-Fuchs equations and mirror maps for hypersurfaces 1992 241 264

[17] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[18] Oda, Tadao Convex bodies and algebraic geometry 1988

[19] Oda, Tadao, Park, Hye Sook Linear Gale transforms and Gel′fand-Kapranov-Zelevinskij decompositions Tohoku Math. J. (2) 1991 375 399

[20] Sturmfels, Bernd Gröbner bases of toric varieties Tohoku Math. J. (2) 1991 249 261

[21] Essays on mirror manifolds 1992

Cité par Sources :