Lattice points in simple polytopes
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 371-392

Voir la notice de l'article provenant de la source American Mathematical Society

DOI : 10.1090/S0894-0347-97-00229-4

Brion, Michel 1 ; Vergne, Michèle 2

1 Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
2 DMI, Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
@article{10_1090_S0894_0347_97_00229_4,
     author = {Brion, Michel and Vergne, Mich\~A{\textasciidieresis}le},
     title = {Lattice points in simple polytopes},
     journal = {Journal of the American Mathematical Society},
     pages = {371--392},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00229-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00229-4/}
}
TY  - JOUR
AU  - Brion, Michel
AU  - Vergne, Michèle
TI  - Lattice points in simple polytopes
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 371
EP  - 392
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00229-4/
DO  - 10.1090/S0894-0347-97-00229-4
ID  - 10_1090_S0894_0347_97_00229_4
ER  - 
%0 Journal Article
%A Brion, Michel
%A Vergne, Michèle
%T Lattice points in simple polytopes
%J Journal of the American Mathematical Society
%D 1997
%P 371-392
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00229-4/
%R 10.1090/S0894-0347-97-00229-4
%F 10_1090_S0894_0347_97_00229_4
Brion, Michel; Vergne, Michèle. Lattice points in simple polytopes. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 371-392. doi: 10.1090/S0894-0347-97-00229-4

[1] Atiyah, Michael Francis Elliptic operators and compact groups 1974

[2] Cappell, Sylvain E., Shaneson, Julius L. Genera of algebraic varieties and counting of lattice points Bull. Amer. Math. Soc. (N.S.) 1994 62 69

[3] Fulton, William Introduction to toric varieties 1993

[4] Ishida, Masa-Nori Polyhedral Laurent series and Brion’s equalities Internat. J. Math. 1990 251 265

[5] Kantor, Jean-Michel, Khovanskii, Askold Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de 𝑅^{𝑑} C. R. Acad. Sci. Paris Sér. I Math. 1993 501 507

[6] Kawasaki, Tetsuro The Riemann-Roch theorem for complex 𝑉-manifolds Osaka Math. J. 1979 151 159

[7] Pukhlikov, A. V., Khovanskiä­, A. G. The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes Algebra i Analiz 1992 188 216

[8] Pommersheim, James E. Toric varieties, lattice points and Dedekind sums Math. Ann. 1993 1 24

[9] Rademacher, Hans, Grosswald, Emil Dedekind sums 1972

[10] Ziegler, Gã¼Nter M. Lectures on polytopes 1995

Cité par Sources :