Mean growth of Koenigs eigenfunctions
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 299-325
Voir la notice de l'article provenant de la source American Mathematical Society
In 1884, G. Koenigs solved Schroederâs functional equation \begin{equation*} f\circ \phi = \lambda f \end{equation*} in the following context: $\phi$ is a given holomorphic function mapping the open unit disk $U$ into itself and fixing a point $a\in U$, $f$ is holomorphic on $U$, and $\lambda$ is a complex scalar. Koenigs showed that if $0 |\phi â(a)| 1$, then Schroederâs equation for $\phi$ has a unique holomorphic solution $\sigma$ satisfying \begin{equation*} \sigma \circ \phi = \phi â(a) \sigma \qquad \text {and}\qquad \sigma â(0) = 1; \end{equation*} moreover, he showed that the only other solutions are the obvious ones given by constant multiples of powers of $\sigma$. We call $\sigma$ the Koenigs eigenfunction of $\phi$. Motivated by fundamental issues in operator theory and function theory, we seek to understand the growth of integral means of Koenigs eigenfunctions. For $0 p \infty$, we prove a sufficient condition for the Koenigs eigenfunction of $\phi$ to belong to the Hardy space $H^p$ and show that the condition is necessary when $\phi$ is analytic on the closed disk. For many mappings $\phi$ the condition may be expressed as a relationship between $\phi â(a)$ and derivatives of $\phi$ at points on $\partial U$ that are fixed by some iterate of $\phi$. Our work depends upon a formula we establish for the essential spectral radius of any composition operator on the Hardy space $H^p$.
Affiliations des auteurs :
Bourdon, Paul 1 ; Shapiro, Joel 2
@article{10_1090_S0894_0347_97_00224_5,
author = {Bourdon, Paul and Shapiro, Joel},
title = {Mean growth of {Koenigs} eigenfunctions},
journal = {Journal of the American Mathematical Society},
pages = {299--325},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1997},
doi = {10.1090/S0894-0347-97-00224-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00224-5/}
}
TY - JOUR AU - Bourdon, Paul AU - Shapiro, Joel TI - Mean growth of Koenigs eigenfunctions JO - Journal of the American Mathematical Society PY - 1997 SP - 299 EP - 325 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00224-5/ DO - 10.1090/S0894-0347-97-00224-5 ID - 10_1090_S0894_0347_97_00224_5 ER -
%0 Journal Article %A Bourdon, Paul %A Shapiro, Joel %T Mean growth of Koenigs eigenfunctions %J Journal of the American Mathematical Society %D 1997 %P 299-325 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00224-5/ %R 10.1090/S0894-0347-97-00224-5 %F 10_1090_S0894_0347_97_00224_5
Bourdon, Paul; Shapiro, Joel. Mean growth of Koenigs eigenfunctions. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 299-325. doi: 10.1090/S0894-0347-97-00224-5
Cité par Sources :