Mean growth of Koenigs eigenfunctions
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 299-325

Voir la notice de l'article provenant de la source American Mathematical Society

In 1884, G. Koenigs solved Schroeder’s functional equation \begin{equation*} f\circ \phi = \lambda f \end{equation*} in the following context: $\phi$ is a given holomorphic function mapping the open unit disk $U$ into itself and fixing a point $a\in U$, $f$ is holomorphic on $U$, and $\lambda$ is a complex scalar. Koenigs showed that if $0 |\phi ’(a)| 1$, then Schroeder’s equation for $\phi$ has a unique holomorphic solution $\sigma$ satisfying \begin{equation*} \sigma \circ \phi = \phi ’(a) \sigma \qquad \text {and}\qquad \sigma ’(0) = 1; \end{equation*} moreover, he showed that the only other solutions are the obvious ones given by constant multiples of powers of $\sigma$. We call $\sigma$ the Koenigs eigenfunction of $\phi$. Motivated by fundamental issues in operator theory and function theory, we seek to understand the growth of integral means of Koenigs eigenfunctions. For $0 p \infty$, we prove a sufficient condition for the Koenigs eigenfunction of $\phi$ to belong to the Hardy space $H^p$ and show that the condition is necessary when $\phi$ is analytic on the closed disk. For many mappings $\phi$ the condition may be expressed as a relationship between $\phi ’(a)$ and derivatives of $\phi$ at points on $\partial U$ that are fixed by some iterate of $\phi$. Our work depends upon a formula we establish for the essential spectral radius of any composition operator on the Hardy space $H^p$.
DOI : 10.1090/S0894-0347-97-00224-5

Bourdon, Paul 1 ; Shapiro, Joel 2

1 Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450
2 Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
@article{10_1090_S0894_0347_97_00224_5,
     author = {Bourdon, Paul and Shapiro, Joel},
     title = {Mean growth of {Koenigs} eigenfunctions},
     journal = {Journal of the American Mathematical Society},
     pages = {299--325},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00224-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00224-5/}
}
TY  - JOUR
AU  - Bourdon, Paul
AU  - Shapiro, Joel
TI  - Mean growth of Koenigs eigenfunctions
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 299
EP  - 325
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00224-5/
DO  - 10.1090/S0894-0347-97-00224-5
ID  - 10_1090_S0894_0347_97_00224_5
ER  - 
%0 Journal Article
%A Bourdon, Paul
%A Shapiro, Joel
%T Mean growth of Koenigs eigenfunctions
%J Journal of the American Mathematical Society
%D 1997
%P 299-325
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00224-5/
%R 10.1090/S0894-0347-97-00224-5
%F 10_1090_S0894_0347_97_00224_5
Bourdon, Paul; Shapiro, Joel. Mean growth of Koenigs eigenfunctions. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 299-325. doi: 10.1090/S0894-0347-97-00224-5

Cité par Sources :