Structure of a Hecke algebra quotient
Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 139-167

Voir la notice de l'article provenant de la source American Mathematical Society

Let $W$ be a Coxeter group with Coxeter graph $\gamma$. Let $\mathcal {H}$ be the associated Hecke algebra. We define a certain ideal $\mathcal {I}$ in $\mathcal {H}$ and study the quotient algebra $\bar {\mathcal {H}} = \mathcal {H}/\mathcal {I}$. We show that when $\gamma$ is one of the infinite series of graphs of type $E$, the quotient is semi-simple. We examine the cell structures of these algebras and construct their irreducible representations. We discuss the case where $\gamma$ is of type $B$, $F$, or $H$.
@article{10_1090_S0894_0347_97_00222_1,
     author = {Fan, C.},
     title = {Structure of a {Hecke} algebra quotient},
     journal = {Journal of the American Mathematical Society},
     pages = {139--167},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00222-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00222-1/}
}
TY  - JOUR
AU  - Fan, C.
TI  - Structure of a Hecke algebra quotient
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 139
EP  - 167
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00222-1/
DO  - 10.1090/S0894-0347-97-00222-1
ID  - 10_1090_S0894_0347_97_00222_1
ER  - 
%0 Journal Article
%A Fan, C.
%T Structure of a Hecke algebra quotient
%J Journal of the American Mathematical Society
%D 1997
%P 139-167
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00222-1/
%R 10.1090/S0894-0347-97-00222-1
%F 10_1090_S0894_0347_97_00222_1
Fan, C. Structure of a Hecke algebra quotient. Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 139-167. doi: 10.1090/S0894-0347-97-00222-1

[1] Bourbaki, Nicolas Éléments de mathématique 1981 290

[2] Jones, V. F. R. Hecke algebra representations of braid groups and link polynomials Ann. of Math. (2) 1987 335 388

[3] Jones, Vaughan F. R. A polynomial invariant for knots via von Neumann algebras Bull. Amer. Math. Soc. (N.S.) 1985 103 111

[4] Kauffmann, Louis, Saleur, H. An algebraic approach to the planar coloring problem Comm. Math. Phys. 1993 565 590

[5] Kazhdan, David, Lusztig, George Representations of Coxeter groups and Hecke algebras Invent. Math. 1979 165 184

[6] Lusztig, George Cells in affine Weyl groups 1985 255 287

[7] Temperley, H. N. V., Lieb, E. H. Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem Proc. Roy. Soc. London Ser. A 1971 251 280

[8] Westbury, B. W. The representation theory of the Temperley-Lieb algebras Math. Z. 1995 539 565

Cité par Sources :