The classification of hypersmooth Borel equivalence relations
Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 215-242 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

DOI : 10.1090/S0894-0347-97-00221-X

Kechris, Alexander  1   ; Louveau, Alain  2

1 Department of Mathematics, A. P. Sloan Laboratory of Mathematics and Statistics, California Institute of Technology, Pasadena, California 91125
2 Equipe d’Analyse, Université Paris VI, 4, Place Jussieu, 75230 Paris Cedex 05, France
@article{10_1090_S0894_0347_97_00221_X,
     author = {Kechris, Alexander and Louveau, Alain},
     title = {The classification of hypersmooth {Borel} equivalence relations},
     journal = {Journal of the American Mathematical Society},
     pages = {215--242},
     year = {1997},
     volume = {10},
     number = {1},
     doi = {10.1090/S0894-0347-97-00221-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00221-X/}
}
TY  - JOUR
AU  - Kechris, Alexander
AU  - Louveau, Alain
TI  - The classification of hypersmooth Borel equivalence relations
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 215
EP  - 242
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00221-X/
DO  - 10.1090/S0894-0347-97-00221-X
ID  - 10_1090_S0894_0347_97_00221_X
ER  - 
%0 Journal Article
%A Kechris, Alexander
%A Louveau, Alain
%T The classification of hypersmooth Borel equivalence relations
%J Journal of the American Mathematical Society
%D 1997
%P 215-242
%V 10
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00221-X/
%R 10.1090/S0894-0347-97-00221-X
%F 10_1090_S0894_0347_97_00221_X
Kechris, Alexander; Louveau, Alain. The classification of hypersmooth Borel equivalence relations. Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 215-242. doi: 10.1090/S0894-0347-97-00221-X

[1] Dougherty, R., Jackson, S., Kechris, A. S. The structure of hyperfinite Borel equivalence relations Trans. Amer. Math. Soc. 1994 193 225

[2] Feldman, J., Ramsay, A. Countable sections for free actions of groups Adv. in Math. 1985 224 227

[3] Friedman, Harvey, Stanley, Lee A Borel reducibility theory for classes of countable structures J. Symbolic Logic 1989 894 914

[4] Harrington, L. A., Kechris, A. S., Louveau, A. A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928

[5] Harrington, Leo, Marker, David, Shelah, Saharon Borel orderings Trans. Amer. Math. Soc. 1988 293 302

[6] Kechris, Alexander S. Countable sections for locally compact group actions Ergodic Theory Dynam. Systems 1992 283 295

[7] Kechris, Alexander S. Countable sections for locally compact group actions. II Proc. Amer. Math. Soc. 1994 241 247

[8] Kechris, Alexander S. Classical descriptive set theory 1995

[9] Louveau, Alain On the reducibility order between Borel equivalence relations 1994 151 155

[10] Miller, Douglas E. On the measurability of orbits in Borel actions Proc. Amer. Math. Soc. 1977 165 170

[11] Moschovakis, Yiannis N. Descriptive set theory 1980

[12] Rogers, James T., Jr. Borel transversals and ergodic measures on indecomposable continua Topology Appl. 1986 217 227

[13] Silver, Jack H. Counting the number of equivalence classes of Borel and coanalytic equivalence relations Ann. Math. Logic 1980 1 28

[14] Bunimovich, L. A., Cornfeld, I. P., Dobrushin, R. L., Jakobson, M. V., Maslova, N. B., Pesin, Ya. B., Sinaĭ, Ya. G., Sukhov, Yu. M., Vershik, A. M. Dynamical systems. II 1989

[15] Vershik, A. M., Fëdorov, A. L. Trajectory theory 1985

[16] Vinokurov, V. G., Ganihodžaev, N. N. Conditional functions in the trajectory theory of dynamical systems Izv. Akad. Nauk SSSR Ser. Mat. 1978

[17] Wagh, V. M. A descriptive version of Ambrose’s representation theorem for flows Proc. Indian Acad. Sci. Math. Sci. 1988 101 108

Cité par Sources :