Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_97_00217_8,
author = {Schlag, W.},
title = {A generalization of {Bourgain\^as} circular maximal theorem},
journal = {Journal of the American Mathematical Society},
pages = {103--122},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1997},
doi = {10.1090/S0894-0347-97-00217-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00217-8/}
}
TY - JOUR AU - Schlag, W. TI - A generalization of Bourgainâs circular maximal theorem JO - Journal of the American Mathematical Society PY - 1997 SP - 103 EP - 122 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00217-8/ DO - 10.1090/S0894-0347-97-00217-8 ID - 10_1090_S0894_0347_97_00217_8 ER -
%0 Journal Article %A Schlag, W. %T A generalization of Bourgainâs circular maximal theorem %J Journal of the American Mathematical Society %D 1997 %P 103-122 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00217-8/ %R 10.1090/S0894-0347-97-00217-8 %F 10_1090_S0894_0347_97_00217_8
Schlag, W. A generalization of Bourgainâs circular maximal theorem. Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 103-122. doi: 10.1090/S0894-0347-97-00217-8
[1] Averages in the plane over convex curves and maximal operators J. Analyse Math. 1986 69 85
[2] On high-dimensional maximal functions associated to convex bodies Amer. J. Math. 1986 1467 1476
[3] , Oscillatory integrals and a multiplier problem for the disc Studia Math. 1972
[4] Packing circles in the plane Proc. London Math. Soc. (3) 1987 37 58
[5] , , Wave front sets, local smoothing and Bourgainâs circular maximal theorem Ann. of Math. (2) 1992 207 218
[6] Propagation of singularities and maximal functions in the plane Invent. Math. 1991 349 376
[7] Fourier integrals in classical analysis 1993
[8] Maximal functions. I. Spherical means Proc. Nat. Acad. Sci. U.S.A. 1976 2174 2175
Cité par Sources :