The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in ℝ³
Journal of the American Mathematical Society, Tome 10 (1997) no. 3, pp. 495-512

Voir la notice de l'article provenant de la source American Mathematical Society

DOI : 10.1090/S0894-0347-97-00215-4

Frohman, Charles 1 ; Meeks, William, III 2

1 Mathematics Department, University of Iowa, Iowa City, Iowa 52242
2 Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
@article{10_1090_S0894_0347_97_00215_4,
     author = {Frohman, Charles and Meeks, William, III},
     title = {The topological uniqueness of complete one-ended minimal surfaces and {Heegaard} surfaces in {\^a„\^A{\textthreesuperior}}},
     journal = {Journal of the American Mathematical Society},
     pages = {495--512},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00215-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00215-4/}
}
TY  - JOUR
AU  - Frohman, Charles
AU  - Meeks, William, III
TI  - The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in ℝ³
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 495
EP  - 512
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00215-4/
DO  - 10.1090/S0894-0347-97-00215-4
ID  - 10_1090_S0894_0347_97_00215_4
ER  - 
%0 Journal Article
%A Frohman, Charles
%A Meeks, William, III
%T The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in ℝ³
%J Journal of the American Mathematical Society
%D 1997
%P 495-512
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00215-4/
%R 10.1090/S0894-0347-97-00215-4
%F 10_1090_S0894_0347_97_00215_4
Frohman, Charles; Meeks, William, III. The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in ℝ³. Journal of the American Mathematical Society, Tome 10 (1997) no. 3, pp. 495-512. doi: 10.1090/S0894-0347-97-00215-4

[1] Boileau, Michel, Otal, Jean-Pierre Sur les scindements de Heegaard du tore 𝑇³ J. Differential Geom. 1990 209 233

[2] Bonahon, Francis, Otal, Jean-Pierre Scindements de Heegaard des espaces lenticulaires Ann. Sci. École Norm. Sup. (4) 1983

[3] Callahan, Michael, Hoffman, David, Meeks, William H., Iii The structure of singly-periodic minimal surfaces Invent. Math. 1990 455 481

[4] Casson, A. J., Gordon, C. Mca. Reducing Heegaard splittings Topology Appl. 1987 275 283

[5] Fischer-Colbrie, D. On complete minimal surfaces with finite Morse index in three-manifolds Invent. Math. 1985 121 132

[6] Fischer-Colbrie, Doris, Schoen, Richard The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature Comm. Pure Appl. Math. 1980 199 211

[7] Freedman, Michael, Hass, Joel, Scott, Peter Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642

[8] Frohman, Charles Minimal surfaces and Heegaard splittings of the three-torus Pacific J. Math. 1986 119 130

[9] Frohman, Charles The topological uniqueness of triply periodic minimal surfaces in 𝑅³ J. Differential Geom. 1990 277 283

[10] Frohman, Charles Heegaard splittings of the three-ball 1992 123 131

[11] Frohman, Charles, Hass, Joel Unstable minimal surfaces and Heegaard splittings Invent. Math. 1989 529 540

[12] Hardt, Robert, Simon, Leon Boundary regularity and embedded solutions for the oriented Plateau problem Ann. of Math. (2) 1979 439 486

[13] Hempel, John 3-Manifolds 1976

[14] Hildebrandt, Stefan Boundary behavior of minimal surfaces Arch. Rational Mech. Anal. 1969 47 82

[15] Hoffman, David, Wei, Fu Sheng, Karcher, Hermann Adding handles to the helicoid Bull. Amer. Math. Soc. (N.S.) 1993 77 84

[16] Hoffman, D., Meeks, W. H., Iii The strong halfspace theorem for minimal surfaces Invent. Math. 1990 373 377

[17] Lawson, H. Blaine, Jr. The unknottedness of minimal embeddings Invent. Math. 1970 183 187

[18] Meeks, William H., Iii The topological uniqueness of minimal surfaces in three-dimensional Euclidean space Topology 1981 389 410

[19] Meeks, William H., Iii The theory of triply periodic minimal surfaces Indiana Univ. Math. J. 1990 877 936

[20] Meeks, William H., Iii, Rosenberg, Harold The maximum principle at infinity for minimal surfaces in flat three manifolds Comment. Math. Helv. 1990 255 270

[21] Meeks, William H., Iii, Yau, Shing Tung The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma Topology 1982 409 442

[22] Meeks, William W., Iii, Yau, Shing Tung The existence of embedded minimal surfaces and the problem of uniqueness Math. Z. 1982 151 168

[23] Meeks, William H., Iii, Yau, Shing-Tung The topological uniqueness of complete minimal surfaces of finite topological type Topology 1992 305 316

[24] Schoen, Richard Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126

[25] Schoen, Richard M. Uniqueness, symmetry, and embeddedness of minimal surfaces J. Differential Geom. 1983

[26] Scott, Peter, Wall, Terry Topological methods in group theory 1979 137 203

[27] Simon, Leon Lectures on geometric measure theory 1983

[28] Waldhausen, Friedhelm Heegaard-Zerlegungen der 3-Sphäre Topology 1968 195 203

Cité par Sources :