On the geometric and topological rigidity of hyperbolic 3-manifolds
Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 37-74

Voir la notice de l'article provenant de la source American Mathematical Society

DOI : 10.1090/S0894-0347-97-00206-3

Gabai, David 1

1 Department of Mathematics, California Institute of Technology, Pasadena, California 91125
@article{10_1090_S0894_0347_97_00206_3,
     author = {Gabai, David},
     title = {On the geometric and topological rigidity of hyperbolic 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {37--74},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00206-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00206-3/}
}
TY  - JOUR
AU  - Gabai, David
TI  - On the geometric and topological rigidity of hyperbolic 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 37
EP  - 74
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00206-3/
DO  - 10.1090/S0894-0347-97-00206-3
ID  - 10_1090_S0894_0347_97_00206_3
ER  - 
%0 Journal Article
%A Gabai, David
%T On the geometric and topological rigidity of hyperbolic 3-manifolds
%J Journal of the American Mathematical Society
%D 1997
%P 37-74
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00206-3/
%R 10.1090/S0894-0347-97-00206-3
%F 10_1090_S0894_0347_97_00206_3
Gabai, David. On the geometric and topological rigidity of hyperbolic 3-manifolds. Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 37-74. doi: 10.1090/S0894-0347-97-00206-3

[1] Anderson, Michael T. Complete minimal varieties in hyperbolic space Invent. Math. 1982 477 494

[2] Epstein, D. B. A., Marden, A. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253

[3] Fenchel, Werner Elementary geometry in hyperbolic space 1989

[4] Farrell, F. T., Jones, L. E. A topological analogue of Mostow’s rigidity theorem J. Amer. Math. Soc. 1989 257 370

[5] Gabai, David Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503

[6] Gabai, David Foliations and 3-manifolds 1991 609 619

[7] Gabai, David Homotopy hyperbolic 3-manifolds are virtually hyperbolic J. Amer. Math. Soc. 1994 193 198

[8] Gabai, David, Oertel, Ulrich Essential laminations in 3-manifolds Ann. of Math. (2) 1989 41 73

[9] Gromov, Michael Hyperbolic manifolds (according to Thurston and Jørgensen) 1981 40 53

[10] Gulliver, Robert, Scott, Peter Least area surfaces can have excess triple points Topology 1987 345 359

[11] Hass, Joel, Scott, Peter The existence of least area surfaces in 3-manifolds Trans. Amer. Math. Soc. 1988 87 114

[12] Kister, J. M. Isotopies in 3-manifolds Trans. Amer. Math. Soc. 1960 213 224

[13] Lang, Urs Quasi-minimizing surfaces in hyperbolic space Math. Z. 1992 581 592

[14] Lang, Urs The existence of complete minimizing hypersurfaces in hyperbolic manifolds Internat. J. Math. 1995 45 58

[15] Meeks, William, Iii, Simon, Leon, Yau, Shing Tung Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature Ann. of Math. (2) 1982 621 659

[16] Meyerhoff, Robert A lower bound for the volume of hyperbolic 3-manifolds Canad. J. Math. 1987 1038 1056

[17] Mostow, G. D. Quasi-conformal mappings in 𝑛-space and the rigidity of hyperbolic space forms Inst. Hautes Études Sci. Publ. Math. 1968 53 104

[18] Ward, Morgan Ring homomorphisms which are also lattice homomorphisms Amer. J. Math. 1939 783 787

[19] Munkres, James Obstructions to the smoothing of piecewise-differentiable homeomorphisms Ann. of Math. (2) 1960 521 554

[20] Schoen, Richard Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126

[21] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381

[22] Waldhausen, Friedhelm On irreducible 3-manifolds which are sufficiently large Ann. of Math. (2) 1968 56 88

Cité par Sources :