Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_97_00206_3,
author = {Gabai, David},
title = {On the geometric and topological rigidity of hyperbolic 3-manifolds},
journal = {Journal of the American Mathematical Society},
pages = {37--74},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1997},
doi = {10.1090/S0894-0347-97-00206-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00206-3/}
}
TY - JOUR AU - Gabai, David TI - On the geometric and topological rigidity of hyperbolic 3-manifolds JO - Journal of the American Mathematical Society PY - 1997 SP - 37 EP - 74 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00206-3/ DO - 10.1090/S0894-0347-97-00206-3 ID - 10_1090_S0894_0347_97_00206_3 ER -
%0 Journal Article %A Gabai, David %T On the geometric and topological rigidity of hyperbolic 3-manifolds %J Journal of the American Mathematical Society %D 1997 %P 37-74 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00206-3/ %R 10.1090/S0894-0347-97-00206-3 %F 10_1090_S0894_0347_97_00206_3
Gabai, David. On the geometric and topological rigidity of hyperbolic 3-manifolds. Journal of the American Mathematical Society, Tome 10 (1997) no. 1, pp. 37-74. doi: 10.1090/S0894-0347-97-00206-3
[1] Complete minimal varieties in hyperbolic space Invent. Math. 1982 477 494
[2] , Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253
[3] Elementary geometry in hyperbolic space 1989
[4] , A topological analogue of Mostowâs rigidity theorem J. Amer. Math. Soc. 1989 257 370
[5] Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503
[6] Foliations and 3-manifolds 1991 609 619
[7] Homotopy hyperbolic 3-manifolds are virtually hyperbolic J. Amer. Math. Soc. 1994 193 198
[8] , Essential laminations in 3-manifolds Ann. of Math. (2) 1989 41 73
[9] Hyperbolic manifolds (according to Thurston and Jørgensen) 1981 40 53
[10] , Least area surfaces can have excess triple points Topology 1987 345 359
[11] , The existence of least area surfaces in 3-manifolds Trans. Amer. Math. Soc. 1988 87 114
[12] Isotopies in 3-manifolds Trans. Amer. Math. Soc. 1960 213 224
[13] Quasi-minimizing surfaces in hyperbolic space Math. Z. 1992 581 592
[14] The existence of complete minimizing hypersurfaces in hyperbolic manifolds Internat. J. Math. 1995 45 58
[15] , , Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature Ann. of Math. (2) 1982 621 659
[16] A lower bound for the volume of hyperbolic 3-manifolds Canad. J. Math. 1987 1038 1056
[17] Quasi-conformal mappings in ð-space and the rigidity of hyperbolic space forms Inst. Hautes Ãtudes Sci. Publ. Math. 1968 53 104
[18] Ring homomorphisms which are also lattice homomorphisms Amer. J. Math. 1939 783 787
[19] Obstructions to the smoothing of piecewise-differentiable homeomorphisms Ann. of Math. (2) 1960 521 554
[20] Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126
[21] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381
[22] On irreducible 3-manifolds which are sufficiently large Ann. of Math. (2) 1968 56 88
Cité par Sources :