Exact Lagrangian immersions with a single double point
Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 1-59

Voir la notice de l'article provenant de la source American Mathematical Society

We show that if a closed orientable $2k$-manifold $K$, $k>2$, with Euler characteristic $\chi (K)\ne -2$ admits an exact Lagrangian immersion into $\mathbb {C}^{2k}$ with one transverse double point and no other self-intersections, then $K$ is diffeomorphic to the sphere. The proof combines Floer homological arguments with a detailed study of moduli spaces of holomorphic disks with boundary in a monotone Lagrangian submanifold obtained by Lagrange surgery on $K$.
DOI : 10.1090/S0894-0347-2015-00825-6

Ekholm, Tobias 1 ; Smith, Ivan 2

1 Department of Mathematics, Uppsala University, Box 480, Uppsala 751 06, Sweden; and Institut Mittag-Leffler, Aurav. 17, Djursholm 182 60, Sweden
2 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
@article{10_1090_S0894_0347_2015_00825_6,
     author = {Ekholm, Tobias and Smith, Ivan},
     title = {Exact {Lagrangian} immersions with a single double point},
     journal = {Journal of the American Mathematical Society},
     pages = {1--59},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2016},
     doi = {10.1090/S0894-0347-2015-00825-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2015-00825-6/}
}
TY  - JOUR
AU  - Ekholm, Tobias
AU  - Smith, Ivan
TI  - Exact Lagrangian immersions with a single double point
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 1
EP  - 59
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2015-00825-6/
DO  - 10.1090/S0894-0347-2015-00825-6
ID  - 10_1090_S0894_0347_2015_00825_6
ER  - 
%0 Journal Article
%A Ekholm, Tobias
%A Smith, Ivan
%T Exact Lagrangian immersions with a single double point
%J Journal of the American Mathematical Society
%D 2016
%P 1-59
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2015-00825-6/
%R 10.1090/S0894-0347-2015-00825-6
%F 10_1090_S0894_0347_2015_00825_6
Ekholm, Tobias; Smith, Ivan. Exact Lagrangian immersions with a single double point. Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 1-59. doi: 10.1090/S0894-0347-2015-00825-6

[1] Abouzaid, Mohammed Framed bordism and Lagrangian embeddings of exotic spheres Ann. of Math. (2) 2012 71 185

[2] Arnol′D, V. I. The first steps of symplectic topology Uspekhi Mat. Nauk 1986

[3] Atiyah, M. F., Hirzebruch, F. Bott periodicity and the parallelizability of the spheres Proc. Cambridge Philos. Soc. 1961 223 226

[4] Bourgeois, Frã©Dã©Ric, Ekholm, Tobias, Eliashberg, Yasha Effect of Legendrian surgery Geom. Topol. 2012 301 389

[5] Cerf, Jean La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie Inst. Hautes Études Sci. Publ. Math. 1970 5 173

[6] Damian, Mihai Floer homology on the universal cover, Audin’s conjecture and other constraints on Lagrangian submanifolds Comment. Math. Helv. 2012 433 462

[7] Donaldson, S. K. Connections, cohomology and the intersection forms of 4-manifolds J. Differential Geom. 1986 275 341

[8] Eliashberg, Yakov, Murphy, Emmy Lagrangian caps Geom. Funct. Anal. 2013 1483 1514

[9] Ekholm, Tobias, Eliashberg, Yakov, Murphy, Emmy, Smith, Ivan Constructing exact Lagrangian immersions with few double points Geom. Funct. Anal. 2013 1772 1803

[10] Ekholm, Tobias Double points of exact Lagrangian immersions and Legendrian contact homology 2006 181 191

[11] Ekholm, Tobias Morse flow trees and Legendrian contact homology in 1-jet spaces Geom. Topol. 2007 1083 1224

[12] Ekholm, Tobias, Etnyre, John B., Sabloff, Joshua M. A duality exact sequence for Legendrian contact homology Duke Math. J. 2009 1 75

[13] Ekholm, Tobias, Etnyre, John, Sullivan, Michael The contact homology of Legendrian submanifolds in ℝ²ⁿ⁺¹ J. Differential Geom. 2005 177 305

[14] Ekholm, Tobias, Etnyre, John, Sullivan, Michael Non-isotopic Legendrian submanifolds in ℝ²ⁿ⁺¹ J. Differential Geom. 2005 85 128

[15] Ekholm, Tobias, Etnyre, John, Sullivan, Michael Legendrian contact homology in 𝑃×ℝ Trans. Amer. Math. Soc. 2007 3301 3335

[16] Ekholm, Tobias, Etnyre, John, Sullivan, Michael Orientations in Legendrian contact homology and exact Lagrangian immersions Internat. J. Math. 2005 453 532

[17] Ekholm, Tobias, Smith, Ivan Exact Lagrangian immersions with one double point revisited Math. Ann. 2014 195 240

[18] Floer, Andreas Morse theory for Lagrangian intersections J. Differential Geom. 1988 513 547

[19] Floer, A. Monopoles on asymptotically flat manifolds 1995 3 41

[20] Frame, Michael On the inertia groups of fibre bundles Proc. Amer. Math. Soc. 1982 289 292

[21] Fukaya, K., Oh, Y.-G., Ohta, K., Ono, K. Lagrangian intersection Floer theory—Anomaly and obstruction, I & II. 2009

[22] Gromov, M. Pseudo holomorphic curves in symplectic manifolds Invent. Math. 1985 307 347

[23] Gromov, Mikhael Partial differential relations 1986

[24] Hofer, Helmut, Wysocki, Krzysztof, Zehnder, Eduard A general Fredholm theory. II. Implicit function theorems Geom. Funct. Anal. 2009 206 293

[25] Hudson, J. F. P. Concordance, isotopy, and diffeotopy Ann. of Math. (2) 1970 425 448

[26] Hudson, J. F. P., Zeeman, E. C. On combinatorial isotopy Inst. Hautes Études Sci. Publ. Math. 1964 69 94

[27] Kervaire, Michel A. A note on obstructions and characteristic classes Amer. J. Math. 1959 773 784

[28] Kervaire, Michel A., Milnor, John W. Groups of homotopy spheres. I Ann. of Math. (2) 1963 504 537

[29] Kragh, Thomas Parametrized ring-spectra and the nearby Lagrangian conjecture Geom. Topol. 2013 639 731

[30] Kwon, Daesung, Oh, Yong-Geun Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition Comm. Anal. Geom. 2000 31 82

[31] Lazzarini, L. Existence of a somewhere injective pseudo-holomorphic disc Geom. Funct. Anal. 2000 829 862

[32] Lee, Y.-P. Quantum 𝐾-theory. I. Foundations Duke Math. J. 2004 389 424

[33] Mcduff, Dusa Examples of symplectic structures Invent. Math. 1987 13 36

[34] Mcduff, Dusa, Salamon, Dietmar Introduction to symplectic topology 1998

[35] Oh, Yong-Geun Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings Math. Res. Lett. 1997 895 905

[36] Oh, Yong-Geun Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I Comm. Pure Appl. Math. 1993 949 993

[37] Oh, Yong-Geun Fredholm theory of holomorphic discs under the perturbation of boundary conditions Math. Z. 1996 505 520

[38] Pazhitnov, A. V. On the sharpness of inequalities of Novikov type for manifolds with a free abelian fundamental group Mat. Sb. 1989

[39] Polterovich, L. The surgery of Lagrange submanifolds Geom. Funct. Anal. 1991 198 210

[40] Schultz, Reinhard E. Smooth structures on 𝑆^{𝑝}×𝑆^{𝑞} Ann. of Math. (2) 1969 187 198

[41] Schultz, Reinhard On the inertia group of a product of spheres Trans. Amer. Math. Soc. 1971 137 153

[42] Seidel, Paul Graded Lagrangian submanifolds Bull. Soc. Math. France 2000 103 149

[43] Smale, Stephen The classification of immersions of spheres in Euclidean spaces Ann. of Math. (2) 1959 327 344

[44] Smale, Stephen Generalized Poincaré’s conjecture in dimensions greater than four Ann. of Math. (2) 1961 391 406

Cité par Sources :