@article{10_1090_S0894_0347_2014_00822_5,
author = {Dyatlov, Semyon},
title = {Resonance projectors and asymptotics for \ensuremath{\mathit{r}}-normally hyperbolic trapped sets},
journal = {Journal of the American Mathematical Society},
pages = {311--381},
year = {2015},
volume = {28},
number = {2},
doi = {10.1090/S0894-0347-2014-00822-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00822-5/}
}
TY - JOUR AU - Dyatlov, Semyon TI - Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets JO - Journal of the American Mathematical Society PY - 2015 SP - 311 EP - 381 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00822-5/ DO - 10.1090/S0894-0347-2014-00822-5 ID - 10_1090_S0894_0347_2014_00822_5 ER -
%0 Journal Article %A Dyatlov, Semyon %T Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets %J Journal of the American Mathematical Society %D 2015 %P 311-381 %V 28 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00822-5/ %R 10.1090/S0894-0347-2014-00822-5 %F 10_1090_S0894_0347_2014_00822_5
Dyatlov, Semyon. Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 311-381. doi: 10.1090/S0894-0347-2014-00822-5
[1] , A class of analytic perturbations for one-body Schrödinger Hamiltonians Comm. Math. Phys. 1971 269 279
[2] , , , Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances Ann. Inst. Fourier (Grenoble) 2011
[3] , Control for Schrödinger operators on tori Math. Res. Lett. 2012 309 324
[4] , Fractal Weyl laws for asymptotically hyperbolic manifolds Geom. Funct. Anal. 2013 1145 1206
[5] , , Sharp polynomial bounds on the number of Pollicott-Ruelle resonances Ergodic Theory Dynam. Systems 2014 1168 1183
[6] , Spectral asymptotics in the semi-classical limit 1999
[7] On decay of correlations in Anosov flows Ann. of Math. (2) 1998 357 390
[8] , The spectrum of positive elliptic operators and periodic bicharacteristics Invent. Math. 1975 39 79
[9] Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole Comm. Math. Phys. 2011 119 163
[10] Exponential energy decay for Kerr–de Sitter black holes beyond event horizons Math. Res. Lett. 2011 1023 1035
[11] Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes Ann. Henri Poincaré 2012 1101 1166
[12] , Microlocal limits of plane waves and Eisenstein functions Ann. Sci. Éc. Norm. Supér. (4) 2014 371 448
[13] , Upper bound on the density of Ruelle resonances for Anosov flows Comm. Math. Phys. 2011 325 364
[14] , Band structure of the Ruelle spectrum of contact Anosov flows C. R. Math. Acad. Sci. Paris 2013 385 391
[15] , Semiclassical resonances generated by a closed trajectory of hyperbolic type Comm. Math. Phys. 1987 391 421
[16] , Resonances en limite semiclassique et exposants de Lyapunov Comm. Math. Phys. 1988 193 213
[17] , An operator generalization of the logarithmic residue theorem and Rouché’s theorem Mat. Sb. (N.S.) 1971 607 629
[18] , Microlocal analysis for differential operators 1994
[19] Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds Duke Math. J. 2005 1 37
[20] , Geometric asymptotics 1977
[21] , Semi-classical analysis 2013
[22] , , The Selberg zeta function for convex co-compact Schottky groups Comm. Math. Phys. 2004 149 176
[23] , , Invariant manifolds 1977
[24] The spectral function of an elliptic operator Acta Math. 1968 193 218
[25] The analysis of linear partial differential operators. I 1990
[26] The analysis of linear partial differential operators. III 1994
[27] The analysis of linear partial differential operators. IV 1994
[28] , , Birkhoff normal forms in semi-classical inverse problems Math. Res. Lett. 2002 337 362
[29] , Lower bounds for resonances of infinite-area Riemann surfaces Anal. PDE 2010 207 225
[30] , Quasi-normal modes of stars and black holes Living Rev. Relativ. 1999
[31] On contact Anosov flows Ann. of Math. (2) 2004 1275 1312
[32] Introduction to the spectral theory of polynomial operator pencils 1988
[33] , Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature J. Funct. Anal. 1987 260 310
[34] , Scattering metrics and geodesic flow at infinity Invent. Math. 1996 389 436
[35] Spectral geometry and scattering theory for certain complete surfaces of finite volume Invent. Math. 1992 265 305
[36] , , From open quantum systems to open quantum maps Comm. Math. Phys. 2011 1 48
[37] , , Fractal Weyl law for open quantum chaotic maps Ann. of Math. (2) 2014 179 251
[38] , Quantum decay rates in chaotic scattering Acta Math. 2009 149 233
[39] Analytic properties of the scattering matrix Nuovo Cimento (10) 1958 671 679
[40] , Distribution of resonances for spherical black holes Math. Res. Lett. 1997 103 121
[41] Geometric bounds on the density of resonances for semiclassical problems Duke Math. J. 1990 1 57
[42] A trace formula and review of some estimates for resonances 1997 377 437
[43] Asymptotic distribution of eigenfrequencies for damped wave equations Publ. Res. Inst. Math. Sci. 2000 573 611
[44] Resonances for bottles and trace formulae Math. Nachr. 2001 95 149
[45] , Asymptotics of the number of Rayleigh resonances Math. Ann. 1997 287 306
[46] , Complex scaling and the distribution of scattering poles J. Amer. Math. Soc. 1991 729 769
[47] , Asymptotic distribution of resonances for convex obstacles Acta Math. 1999 191 253
[48] , Fractal upper bounds on the density of semiclassical resonances Duke Math. J. 2007 381 459
[49] , Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body Duke Math. J. 1995 677 714
[50] , From quasimodes to resonances Math. Res. Lett. 1998 261 272
[51] Partial differential equations. I 1996
[52] The theory of the Riemann zeta-function 1986
[53] Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform Ergodic Theory Dynam. Systems 2012 2083 2118
[54] Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates 2013 487 528
[55] Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov) Invent. Math. 2013 381 513
[56] Systèmes intégrables semi-classiques: du local au global 2006
[57] , Resolvent estimates for normally hyperbolic trapped sets Ann. Henri Poincaré 2011 1349 1385
[58] Distribution of poles for scattering on the real line J. Funct. Anal. 1987 277 296
[59] Semiclassical analysis 2012
Cité par Sources :