Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets
Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 311-381 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We prove a Weyl law for scattering resonances in a strip near the real axis when the trapped set is $r$-normally hyperbolic with $r$ large and a pinching condition on the normal expansion rates holds. Our dynamical assumptions are stable under smooth perturbations and are motivated by wave dynamics for black holes. The key step is a construction of a Fourier integral operator which microlocally projects onto the resonant states. In addition to the Weyl law, this operator provides new information about microlocal properties of resonant states.
DOI : 10.1090/S0894-0347-2014-00822-5

Dyatlov, Semyon  1 , 2

1 Department of Mathematics, University of California, Berkeley, California 94720
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_2014_00822_5,
     author = {Dyatlov, Semyon},
     title = {Resonance projectors and asymptotics for \ensuremath{\mathit{r}}-normally hyperbolic trapped sets},
     journal = {Journal of the American Mathematical Society},
     pages = {311--381},
     year = {2015},
     volume = {28},
     number = {2},
     doi = {10.1090/S0894-0347-2014-00822-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00822-5/}
}
TY  - JOUR
AU  - Dyatlov, Semyon
TI  - Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 311
EP  - 381
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00822-5/
DO  - 10.1090/S0894-0347-2014-00822-5
ID  - 10_1090_S0894_0347_2014_00822_5
ER  - 
%0 Journal Article
%A Dyatlov, Semyon
%T Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets
%J Journal of the American Mathematical Society
%D 2015
%P 311-381
%V 28
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00822-5/
%R 10.1090/S0894-0347-2014-00822-5
%F 10_1090_S0894_0347_2014_00822_5
Dyatlov, Semyon. Resonance projectors and asymptotics for 𝑟-normally hyperbolic trapped sets. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 311-381. doi: 10.1090/S0894-0347-2014-00822-5

[1] Aguilar, J., Combes, J. M. A class of analytic perturbations for one-body Schrödinger Hamiltonians Comm. Math. Phys. 1971 269 279

[2] Bony, Jean-François, Fujiié, Setsuro, Ramond, Thierry, Zerzeri, Maher Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances Ann. Inst. Fourier (Grenoble) 2011

[3] Burq, Nicolas, Zworski, Maciej Control for Schrödinger operators on tori Math. Res. Lett. 2012 309 324

[4] Datchev, Kiril, Dyatlov, Semyon Fractal Weyl laws for asymptotically hyperbolic manifolds Geom. Funct. Anal. 2013 1145 1206

[5] Datchev, Kiril, Dyatlov, Semyon, Zworski, Maciej Sharp polynomial bounds on the number of Pollicott-Ruelle resonances Ergodic Theory Dynam. Systems 2014 1168 1183

[6] Dimassi, Mouez, Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit 1999

[7] Dolgopyat, Dmitry On decay of correlations in Anosov flows Ann. of Math. (2) 1998 357 390

[8] Duistermaat, J. J., Guillemin, V. W. The spectrum of positive elliptic operators and periodic bicharacteristics Invent. Math. 1975 39 79

[9] Dyatlov, Semyon Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole Comm. Math. Phys. 2011 119 163

[10] Dyatlov, Semyon Exponential energy decay for Kerr–de Sitter black holes beyond event horizons Math. Res. Lett. 2011 1023 1035

[11] Dyatlov, Semyon Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes Ann. Henri Poincaré 2012 1101 1166

[12] Dyatlov, Semyon, Guillarmou, Colin Microlocal limits of plane waves and Eisenstein functions Ann. Sci. Éc. Norm. Supér. (4) 2014 371 448

[13] Faure, Frédéric, Sjöstrand, Johannes Upper bound on the density of Ruelle resonances for Anosov flows Comm. Math. Phys. 2011 325 364

[14] Faure, Frédéric, Tsujii, Masato Band structure of the Ruelle spectrum of contact Anosov flows C. R. Math. Acad. Sci. Paris 2013 385 391

[15] Gérard, C., Sjöstrand, J. Semiclassical resonances generated by a closed trajectory of hyperbolic type Comm. Math. Phys. 1987 391 421

[16] Gérard, C., Sjöstrand, J. Resonances en limite semiclassique et exposants de Lyapunov Comm. Math. Phys. 1988 193 213

[17] Gohberg, I. C., Sigal, E. I. An operator generalization of the logarithmic residue theorem and Rouché’s theorem Mat. Sb. (N.S.) 1971 607 629

[18] Grigis, Alain, Sjöstrand, Johannes Microlocal analysis for differential operators 1994

[19] Guillarmou, Colin Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds Duke Math. J. 2005 1 37

[20] Guillemin, Victor, Sternberg, Shlomo Geometric asymptotics 1977

[21] Guillemin, Victor, Sternberg, Shlomo Semi-classical analysis 2013

[22] Guillopé, Laurent, Lin, Kevin K., Zworski, Maciej The Selberg zeta function for convex co-compact Schottky groups Comm. Math. Phys. 2004 149 176

[23] Hirsch, M. W., Pugh, C. C., Shub, M. Invariant manifolds 1977

[24] Hörmander, Lars The spectral function of an elliptic operator Acta Math. 1968 193 218

[25] Hörmander, Lars The analysis of linear partial differential operators. I 1990

[26] Hörmander, Lars The analysis of linear partial differential operators. III 1994

[27] Hörmander, Lars The analysis of linear partial differential operators. IV 1994

[28] Iantchenko, A., Sjöstrand, J., Zworski, M. Birkhoff normal forms in semi-classical inverse problems Math. Res. Lett. 2002 337 362

[29] Jakobson, Dmitry, Naud, Frédéric Lower bounds for resonances of infinite-area Riemann surfaces Anal. PDE 2010 207 225

[30] Kokkotas, Kostas D., Schmidt, Bernd G. Quasi-normal modes of stars and black holes Living Rev. Relativ. 1999

[31] Liverani, Carlangelo On contact Anosov flows Ann. of Math. (2) 2004 1275 1312

[32] Markus, A. S. Introduction to the spectral theory of polynomial operator pencils 1988

[33] Mazzeo, Rafe R., Melrose, Richard B. Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature J. Funct. Anal. 1987 260 310

[34] Melrose, Richard, Zworski, Maciej Scattering metrics and geodesic flow at infinity Invent. Math. 1996 389 436

[35] Müller, Werner Spectral geometry and scattering theory for certain complete surfaces of finite volume Invent. Math. 1992 265 305

[36] Nonnenmacher, Stéphane, Sjöstrand, Johannes, Zworski, Maciej From open quantum systems to open quantum maps Comm. Math. Phys. 2011 1 48

[37] Nonnenmacher, Stéphane, Sjöstrand, Johannes, Zworski, Maciej Fractal Weyl law for open quantum chaotic maps Ann. of Math. (2) 2014 179 251

[38] Nonnenmacher, Stéphane, Zworski, Maciej Quantum decay rates in chaotic scattering Acta Math. 2009 149 233

[39] Regge, T. Analytic properties of the scattering matrix Nuovo Cimento (10) 1958 671 679

[40] Sá Barreto, Antônio, Zworski, Maciej Distribution of resonances for spherical black holes Math. Res. Lett. 1997 103 121

[41] Sjöstrand, Johannes Geometric bounds on the density of resonances for semiclassical problems Duke Math. J. 1990 1 57

[42] Sjöstrand, J. A trace formula and review of some estimates for resonances 1997 377 437

[43] Sjöstrand, Johannes Asymptotic distribution of eigenfrequencies for damped wave equations Publ. Res. Inst. Math. Sci. 2000 573 611

[44] Sjöstrand, Johannes Resonances for bottles and trace formulae Math. Nachr. 2001 95 149

[45] Sjöstrand, Johannes, Vodev, Georgi Asymptotics of the number of Rayleigh resonances Math. Ann. 1997 287 306

[46] Sjöstrand, Johannes, Zworski, Maciej Complex scaling and the distribution of scattering poles J. Amer. Math. Soc. 1991 729 769

[47] Sjöstrand, Johannes, Zworski, Maciej Asymptotic distribution of resonances for convex obstacles Acta Math. 1999 191 253

[48] Sjöstrand, Johannes, Zworski, Maciej Fractal upper bounds on the density of semiclassical resonances Duke Math. J. 2007 381 459

[49] Stefanov, P., Vodev, G. Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body Duke Math. J. 1995 677 714

[50] Tang, Siu-Hung, Zworski, Maciej From quasimodes to resonances Math. Res. Lett. 1998 261 272

[51] Taylor, Michael E. Partial differential equations. I 1996

[52] Titchmarsh, E. C. The theory of the Riemann zeta-function 1986

[53] Tsujii, Masato Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform Ergodic Theory Dynam. Systems 2012 2083 2118

[54] Vasy, András Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates 2013 487 528

[55] Vasy, András Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov) Invent. Math. 2013 381 513

[56] Vũ Ngọc, San Systèmes intégrables semi-classiques: du local au global 2006

[57] Wunsch, Jared, Zworski, Maciej Resolvent estimates for normally hyperbolic trapped sets Ann. Henri Poincaré 2011 1349 1385

[58] Zworski, Maciej Distribution of poles for scattering on the real line J. Funct. Anal. 1987 277 296

[59] Zworski, Maciej Semiclassical analysis 2012

Cité par Sources :