Bertini irreducibility theorems over finite fields
Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source American Mathematical Society

Given a geometrically irreducible subscheme $X \subseteq \mathbb {P}^n_{\mathbb {F}_q}$ of dimension at least $2$, we prove that the fraction of degree $d$ hypersurfaces $H$ such that $H \cap X$ is geometrically irreducible tends to $1$ as $d \to \infty$. We also prove variants in which $X$ is over an extension of $\mathbb {F}_q$, and in which the immersion $X \to \mathbb {P}^n_{\mathbb {F}_q}$ is replaced by a more general morphism.
DOI : 10.1090/S0894-0347-2014-00820-1

Charles, François 1 ; Poonen, Bjorn 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307; and CNRS, Laboratoire de Mathématiques d’Orsay,Université Paris-Sud, 91405 Orsay CEDEX, France
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
@article{10_1090_S0894_0347_2014_00820_1,
     author = {Charles, Fran\~A{\textsection}ois and Poonen, Bjorn},
     title = {Bertini irreducibility theorems over finite fields},
     journal = {Journal of the American Mathematical Society},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2016},
     doi = {10.1090/S0894-0347-2014-00820-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00820-1/}
}
TY  - JOUR
AU  - Charles, François
AU  - Poonen, Bjorn
TI  - Bertini irreducibility theorems over finite fields
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 81
EP  - 94
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00820-1/
DO  - 10.1090/S0894-0347-2014-00820-1
ID  - 10_1090_S0894_0347_2014_00820_1
ER  - 
%0 Journal Article
%A Charles, François
%A Poonen, Bjorn
%T Bertini irreducibility theorems over finite fields
%J Journal of the American Mathematical Society
%D 2016
%P 81-94
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00820-1/
%R 10.1090/S0894-0347-2014-00820-1
%F 10_1090_S0894_0347_2014_00820_1
Charles, François; Poonen, Bjorn. Bertini irreducibility theorems over finite fields. Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 81-94. doi: 10.1090/S0894-0347-2014-00820-1

[1] Bary-Soroker, Lior 2013-09-16

[2] Benoist, Olivier Le théorème de Bertini en famille Bull. Soc. Math. France 2011 555 569

[3] Conrad, Brian Deligne’s notes on Nagata compactifications J. Ramanujan Math. Soc. 2007 205 257

[4] Duncan, Alexander, Reichstein, Zinovy Pseudo-reflection groups and essential dimension 2014-02-28

[5] Jouanolou, Jean-Pierre Théorèmes de Bertini et applications 1983

[6] Lang, Serge Sur les séries 𝐿 d’une variété algébrique Bull. Soc. Math. France 1956 385 407

[7] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[8] Mumford, David Abelian varieties 1970

[9] Neumann, Konrad Every finitely generated regular field extension has a stable transcendence base Israel J. Math. 1998 221 260

[10] Panin, Ivan On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: I 2014-06-02

[11] Panin, Ivan On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: II 2014-06-02

[12] Panin, Ivan Proof of Grothendieck-Serre conjecture on principal G-bundles over regular local rings containing a finite field 2014-06-02

[13] Poonen, Bjorn Bertini theorems over finite fields Ann. of Math. (2) 2004 1099 1127

[14] Poonen, Bjorn Smooth hypersurface sections containing a given subscheme over a finite field Math. Res. Lett. 2008 265 271

Cité par Sources :