Voir la notice de l'article provenant de la source American Mathematical Society
Charles, François 1 ; Poonen, Bjorn 2
@article{10_1090_S0894_0347_2014_00820_1,
     author = {Charles, Fran\~A{\textsection}ois and Poonen, Bjorn},
     title = {Bertini irreducibility theorems over finite fields},
     journal = {Journal of the American Mathematical Society},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2016},
     doi = {10.1090/S0894-0347-2014-00820-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00820-1/}
}
                      
                      
                    TY - JOUR AU - Charles, François AU - Poonen, Bjorn TI - Bertini irreducibility theorems over finite fields JO - Journal of the American Mathematical Society PY - 2016 SP - 81 EP - 94 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00820-1/ DO - 10.1090/S0894-0347-2014-00820-1 ID - 10_1090_S0894_0347_2014_00820_1 ER -
%0 Journal Article %A Charles, François %A Poonen, Bjorn %T Bertini irreducibility theorems over finite fields %J Journal of the American Mathematical Society %D 2016 %P 81-94 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00820-1/ %R 10.1090/S0894-0347-2014-00820-1 %F 10_1090_S0894_0347_2014_00820_1
Charles, François; Poonen, Bjorn. Bertini irreducibility theorems over finite fields. Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 81-94. doi: 10.1090/S0894-0347-2014-00820-1
[1] 2013-09-16
[2] Le théorème de Bertini en famille Bull. Soc. Math. France 2011 555 569
[3] Deligneâs notes on Nagata compactifications J. Ramanujan Math. Soc. 2007 205 257
[4] , Pseudo-reflection groups and essential dimension 2014-02-28
[5] Théorèmes de Bertini et applications 1983
[6] Sur les séries ð¿ dâune variété algébrique Bull. Soc. Math. France 1956 385 407
[7] Positivity in algebraic geometry. I 2004
[8] Abelian varieties 1970
[9] Every finitely generated regular field extension has a stable transcendence base Israel J. Math. 1998 221 260
[10] On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: I 2014-06-02
[11] On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: II 2014-06-02
[12] Proof of Grothendieck-Serre conjecture on principal G-bundles over regular local rings containing a finite field 2014-06-02
[13] Bertini theorems over finite fields Ann. of Math. (2) 2004 1099 1127
[14] Smooth hypersurface sections containing a given subscheme over a finite field Math. Res. Lett. 2008 265 271
Cité par Sources :
