Splitting vector bundles outside the stable range and 𝔸¹-homotopy sheaves of punctured affine spaces
Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 1031-1062

Voir la notice de l'article provenant de la source American Mathematical Society

We discuss the relationship between the ${\mathbb A}^1$-homotopy sheaves of ${\mathbb A}^n {\setminus } 0$ and the problem of splitting off a trivial rank $1$ summand from a rank $n$ vector bundle. We begin by computing $\boldsymbol {\pi }_3^{{\mathbb A}^1}({\mathbb A}^3 {\setminus } 0)$ and providing a host of related computations of “non-stable” ${\mathbb A}^1$-homotopy sheaves. We then use our computation to deduce that a rank $3$ vector bundle on a smooth affine $4$-fold over an algebraically closed field having characteristic unequal to $2$ splits off a trivial rank $1$ summand if and only if its third Chern class (in Chow theory) is trivial. This result provides a positive answer to a case of a conjecture of M.P. Murthy.
DOI : 10.1090/S0894-0347-2014-00818-3

Asok, Aravind 1 ; Fasel, Jean 2

1 Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
2 Fakultät Mathematik, Universität Duisburg-Essen, Campus Essen, Thea-Leymann-Strasse 9, D-45127 Essen, Germany
@article{10_1090_S0894_0347_2014_00818_3,
     author = {Asok, Aravind and Fasel, Jean},
     title = {Splitting vector bundles outside the stable range and {{\dh}”¸\^A{\textonesuperior}-homotopy} sheaves of punctured affine spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {1031--1062},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00818-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00818-3/}
}
TY  - JOUR
AU  - Asok, Aravind
AU  - Fasel, Jean
TI  - Splitting vector bundles outside the stable range and 𝔸¹-homotopy sheaves of punctured affine spaces
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 1031
EP  - 1062
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00818-3/
DO  - 10.1090/S0894-0347-2014-00818-3
ID  - 10_1090_S0894_0347_2014_00818_3
ER  - 
%0 Journal Article
%A Asok, Aravind
%A Fasel, Jean
%T Splitting vector bundles outside the stable range and 𝔸¹-homotopy sheaves of punctured affine spaces
%J Journal of the American Mathematical Society
%D 2015
%P 1031-1062
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00818-3/
%R 10.1090/S0894-0347-2014-00818-3
%F 10_1090_S0894_0347_2014_00818_3
Asok, Aravind; Fasel, Jean. Splitting vector bundles outside the stable range and 𝔸¹-homotopy sheaves of punctured affine spaces. Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 1031-1062. doi: 10.1090/S0894-0347-2014-00818-3

[1] Asok, Aravind, Fasel, Jean Comparing Euler classes 2013

[2] Asok, Aravind, Fasel, Jean Motivic secondary characteristic classes and the Euler class 2013

[3] Asok, Aravind, Fasel, Jean Toward a meta-stable range in 𝔸¹-homotopy theory of punctured affine spaces Oberwolfach Rep. 2013

[4] Asok, Aravind, Fasel, Jean Algebraic vector bundles on spheres J. Topol. 2014

[5] Asok, Aravind, Fasel, Jean A cohomological classification of vector bundles on smooth affine threefolds Duke Math. J. 2014

[6] Asok, Aravind, Fasel, Jean An explicit 𝐾𝑂-degree map and applications 2014

[7] Asok, Aravind, Fasel, Jean The simplicial suspension sequence 2014

[8] Asok, Aravind Splitting vector bundles and 𝔸¹-fundamental groups of higher-dimensional varieties J. Topol. 2013 311 348

[9] Bhatwadekar, S. M. A cancellation theorem for projective modules over affine algebras over 𝐶₁-fields J. Pure Appl. Algebra 2003 17 26

[10] Bott, Raoul The stable homotopy of the classical groups Ann. of Math. (2) 1959 313 337

[11] Brosnan, Patrick Steenrod operations in Chow theory Trans. Amer. Math. Soc. 2003 1869 1903

[12] Balmer, Paul, Walter, Charles A Gersten-Witt spectral sequence for regular schemes Ann. Sci. École Norm. Sup. (4) 2002 127 152

[13] Dundas, Bjã¸Rn Ian, Rã¶Ndigs, Oliver, ØStvã¦R, Paul Arne Motivic functors Doc. Math. 2003 489 525

[14] Fasel, Jean Groupes de Chow-Witt Mém. Soc. Math. Fr. (N.S.) 2008

[15] Fasel, J., Rao, R. A., Swan, R. G. On stably free modules over affine algebras Publ. Math. Inst. Hautes Études Sci. 2012 223 243

[16] Fasel, J., Srinivas, V. A vanishing theorem for oriented intersection multiplicities Math. Res. Lett. 2008 447 458

[17] Fasel, J., Srinivas, V. Chow-Witt groups and Grothendieck-Witt groups of regular schemes Adv. Math. 2009 302 329

[18] Fulton, William Intersection theory 1998

[19] Goerss, Paul G., Jardine, John F. Simplicial homotopy theory 1999

[20] Harris, Bruno Some calculations of homotopy groups of symmetric spaces Trans. Amer. Math. Soc. 1963 174 184

[21] Hornbostel, Jens Constructions and dévissage in Hermitian 𝐾-theory 𝐾-Theory 2002 139 170

[22] Hornbostel, Jens 𝐴¹-representability of Hermitian 𝐾-theory and Witt groups Topology 2005 661 687

[23] Hu, Sze-Tsen Homotopy theory 1959

[24] Karoubi, Max Périodicité de la 𝐾-théorie hermitienne 1973 301 411

[25] Karoubi, Max Le théorème fondamental de la 𝐾-théorie hermitienne Ann. of Math. (2) 1980 259 282

[26] Kervaire, Michel A. Some nonstable homotopy groups of Lie groups Illinois J. Math. 1960 161 169

[27] Kumar, N. Mohan, Murthy, M. Pavaman Algebraic cycles and vector bundles over affine three-folds Ann. of Math. (2) 1982 579 591

[28] Mahowald, Mark The metastable homotopy of 𝑆ⁿ 1967 81

[29] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[30] Morel, Fabien An introduction to 𝔸¹-homotopy theory 2004 357 441

[31] Morel, Fabien Milnor’s conjecture on quadratic forms and mod 2 motivic complexes Rend. Sem. Mat. Univ. Padova 2005

[32] Morel, Fabien The stable 𝔸¹-connectivity theorems 𝐾-Theory 2005 1 68

[33] Morel, Fabien 𝔸¹-algebraic topology over a field 2012

[34] Milnor, John W., Stasheff, James D. Characteristic classes 1974

[35] Murthy, M. Pavaman, Swan, Richard G. Vector bundles over affine surfaces Invent. Math. 1976 125 165

[36] Murthy, M. Pavaman Zero cycles and projective modules Ann. of Math. (2) 1994 405 434

[37] Murthy, M. Pavaman A survey of obstruction theory for projective modules of top rank 1999 153 174

[38] Morel, Fabien, Voevodsky, Vladimir 𝐴¹-homotopy theory of schemes Inst. Hautes Études Sci. Publ. Math. 1999

[39] Panin, I. Homotopy invariance of the sheaf 𝑊_{𝑁𝑖𝑠} and of its cohomology 2010 325 335

[40] Panin, Ivan, Walter, Charles On the motivic commutative ring spectrum 𝐁𝐎 2010

[41] Robinson, C. A. Moore-Postnikov systems for non-simple fibrations Illinois J. Math. 1972 234 242

[42] Rost, Markus Chow groups with coefficients Doc. Math. 1996

[43] Schlichting, Marco Hermitian 𝐾-theory of exact categories J. K-Theory 2010 105 165

[44] Schlichting, Marco The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes Invent. Math. 2010 349 433

[45] Schlichting, Marco Hermitian 𝐾-theory on a theorem of Giffen 𝐾-Theory 2004 253 267

[46] Serre, J.-P. Modules projectifs et espaces fibrés à fibre vectorielle 1958

[47] Schlichting, Marco, Tripathi, Girja S. Geometric models for higher Grothendieck-Witt groups in 𝔸¹-homotopy theory 2013

[48] Suslin, A. A. A cancellation theorem for projective modules over algebras Dokl. Akad. Nauk SSSR 1977 808 811

[49] Suslin, A. A. Mennicke symbols and their applications in the 𝐾-theory of fields 1982 334 356

[50] Toda, Hirosi Composition methods in homotopy groups of spheres 1962

[51] Totaro, Burt The Chow ring of a classifying space 1999 249 281

[52] Voevodsky, Vladimir Reduced power operations in motivic cohomology Publ. Math. Inst. Hautes Études Sci. 2003 1 57

[53] Weibel, Charles A. The 𝐾-book 2013

[54] Wendt, Matthias Rationally trivial torsors in 𝔸¹-homotopy theory J. K-Theory 2011 541 572

Cité par Sources :