Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2014_00814_6,
author = {Avila, Artur},
title = {On the {Kotani-Last} and {Schr\~A{\textparagraph}dinger} conjectures},
journal = {Journal of the American Mathematical Society},
pages = {579--616},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2015},
doi = {10.1090/S0894-0347-2014-00814-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00814-6/}
}
TY - JOUR AU - Avila, Artur TI - On the Kotani-Last and Schrödinger conjectures JO - Journal of the American Mathematical Society PY - 2015 SP - 579 EP - 616 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00814-6/ DO - 10.1090/S0894-0347-2014-00814-6 ID - 10_1090_S0894_0347_2014_00814_6 ER -
%0 Journal Article %A Avila, Artur %T On the Kotani-Last and Schrödinger conjectures %J Journal of the American Mathematical Society %D 2015 %P 579-616 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00814-6/ %R 10.1090/S0894-0347-2014-00814-6 %F 10_1090_S0894_0347_2014_00814_6
Avila, Artur. On the Kotani-Last and Schrödinger conjectures. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 579-616. doi: 10.1090/S0894-0347-2014-00814-6
[1] , , A KAM scheme for ðð¿(2,â) cocycles with Liouvillean frequencies Geom. Funct. Anal. 2011 1001 1019
[2] , Almost periodic Schrödinger operators. I. Limit periodic potentials Comm. Math. Phys. 1981/82 101 120
[3] , , The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials Math. Res. Lett. 1997 719 723
[4] , The algebraic-geometric AKNS potentials Ergodic Theory Dynam. Systems 1987 1 24
[5] Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications 2007 539 563
[6] , On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials Comm. Math. Phys. 1999 341 347
[7] , Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension Comm. Math. Phys. 1983 389 411
[8] , The one-dimensional Schrödinger equation with quasiperiodic potential Funkcional. Anal. i Priložen. 1975 8 21
[9] , Rigidity results for quasiperiodic ðð¿(2,â)-cocycles J. Mod. Dyn. 2009 497 510
[10] Ergodic Schrödinger operators (on one foot) 2007 613 647
[11] Spectral multiplicity of a second-order differential operator and expansion in eigenfunction Izv. Akad. Nauk SSSR Ser. Mat. 1963 1081 1112
[12] Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators 1984 225 247
[13] Generalized Floquet theory for stationary Schrödinger operators in one dimension Chaos Solitons Fractals 1997 1817 1854
[14] , Almost periodicity of some random potentials J. Funct. Anal. 1988 390 405
[15] , Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators Invent. Math. 1999 329 367
[16] , , Behavior of generalized eigenfunctions at infinity and the Schrödinger conjecture Russian J. Math. Phys. 1993 71 104
[17] , , A Carleson theorem for a Cantor group model of the scattering transform Nonlinearity 2003 219 246
[18] , , A counterexample to a multilinear endpoint question of Christ and Kiselev Math. Res. Lett. 2003 237 246
[19] Functional Analysis 1972
[20] The absolutely continuous spectrum of Jacobi matrices Ann. of Math. (2) 2011 125 171
[21] Equilibrium measures and capacities in spectral theory Inverse Probl. Imaging 2007 713 772
[22] Orthogonal polynomials and approximation theory: some open problems 2010 287 298
[23] , Kotani-Last problem and Hardy spaces on surfaces of Widom type J. Inventiones mathematicae 2013 1 58
[24] Some questions and remarks about ðð¿(2,ð) cocycles 2004 447 458
[25] Singular spectral properties of a one-dimensional Schrödinger operator with almost periodic potential 1991 215 254
Cité par Sources :