On the Kotani-Last and Schrödinger conjectures
Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 579-616

Voir la notice de l'article provenant de la source American Mathematical Society

In the theory of ergodic one-dimensional Schrödinger operators, the ac spectrum has been traditionally expected to be very rigid. Two key conjectures in this direction state, on the one hand, that the ac spectrum demands almost periodicity of the potential, and, on the other hand, that the eigenfunctions are almost surely bounded in the essential support of the ac spectrum. We show how the repeated slow deformation of periodic potentials can be used to break rigidity, and disprove both conjectures.
DOI : 10.1090/S0894-0347-2014-00814-6

Avila, Artur 1, 2

1 CNRS, IMJ-PRG, UMR 7586, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonnes Universités, UPMC Univ Paris 06, F-75013, Paris, France
2 IMPA, Estrada Dona Castorina 110, Rio de Janeiro, Brasil
@article{10_1090_S0894_0347_2014_00814_6,
     author = {Avila, Artur},
     title = {On the {Kotani-Last} and {Schr\~A{\textparagraph}dinger} conjectures},
     journal = {Journal of the American Mathematical Society},
     pages = {579--616},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00814-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00814-6/}
}
TY  - JOUR
AU  - Avila, Artur
TI  - On the Kotani-Last and Schrödinger conjectures
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 579
EP  - 616
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00814-6/
DO  - 10.1090/S0894-0347-2014-00814-6
ID  - 10_1090_S0894_0347_2014_00814_6
ER  - 
%0 Journal Article
%A Avila, Artur
%T On the Kotani-Last and Schrödinger conjectures
%J Journal of the American Mathematical Society
%D 2015
%P 579-616
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00814-6/
%R 10.1090/S0894-0347-2014-00814-6
%F 10_1090_S0894_0347_2014_00814_6
Avila, Artur. On the Kotani-Last and Schrödinger conjectures. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 579-616. doi: 10.1090/S0894-0347-2014-00814-6

[1] Avila, Artur, Fayad, Bassam, Krikorian, Raphaã«L A KAM scheme for 𝑆𝐿(2,ℝ) cocycles with Liouvillean frequencies Geom. Funct. Anal. 2011 1001 1019

[2] Avron, Joseph, Simon, Barry Almost periodic Schrödinger operators. I. Limit periodic potentials Comm. Math. Phys. 1981/82 101 120

[3] Christ, Michael, Kiselev, Alexander, Remling, Christian The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials Math. Res. Lett. 1997 719 723

[4] De Concini, Corrado, Johnson, Russell A. The algebraic-geometric AKNS potentials Ergodic Theory Dynam. Systems 1987 1 24

[5] Damanik, David Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications 2007 539 563

[6] Deift, P., Killip, R. On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials Comm. Math. Phys. 1999 341 347

[7] Deift, P., Simon, B. Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension Comm. Math. Phys. 1983 389 411

[8] Dinaburg, E. I., Sinaä­, Ja. G. The one-dimensional Schrödinger equation with quasiperiodic potential Funkcional. Anal. i Priložen. 1975 8 21

[9] Fayad, Bassam, Krikorian, Raphaã«L Rigidity results for quasiperiodic 𝑆𝐿(2,ℝ)-cocycles J. Mod. Dyn. 2009 497 510

[10] Jitomirskaya, Svetlana Ergodic Schrödinger operators (on one foot) 2007 613 647

[11] Kac, I. S. Spectral multiplicity of a second-order differential operator and expansion in eigenfunction Izv. Akad. Nauk SSSR Ser. Mat. 1963 1081 1112

[12] Kotani, Shinichi Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators 1984 225 247

[13] Kotani, S. Generalized Floquet theory for stationary Schrödinger operators in one dimension Chaos Solitons Fractals 1997 1817 1854

[14] Kotani, S., Krishna, M. Almost periodicity of some random potentials J. Funct. Anal. 1988 390 405

[15] Last, Yoram, Simon, Barry Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators Invent. Math. 1999 329 367

[16] Maslov, Victor P., Molchanov, Stanislav A., Gordon, Alexander Ya. Behavior of generalized eigenfunctions at infinity and the Schrödinger conjecture Russian J. Math. Phys. 1993 71 104

[17] Muscalu, Camil, Tao, Terence, Thiele, Christoph A Carleson theorem for a Cantor group model of the scattering transform Nonlinearity 2003 219 246

[18] Muscalu, Camil, Tao, Terence, Thiele, Christoph A counterexample to a multilinear endpoint question of Christ and Kiselev Math. Res. Lett. 2003 237 246

[19] Reed, M. Functional Analysis 1972

[20] Remling, Christian The absolutely continuous spectrum of Jacobi matrices Ann. of Math. (2) 2011 125 171

[21] Simon, Barry Equilibrium measures and capacities in spectral theory Inverse Probl. Imaging 2007 713 772

[22] Van Assche, Walter Orthogonal polynomials and approximation theory: some open problems 2010 287 298

[23] Volberg, A., Yuditskii, P. Kotani-Last problem and Hardy spaces on surfaces of Widom type J. Inventiones mathematicae 2013 1 58

[24] Yoccoz, Jean-Christophe Some questions and remarks about 𝑆𝐿(2,𝐑) cocycles 2004 447 458

[25] Zhitomirskaya, S. Ya. Singular spectral properties of a one-dimensional Schrödinger operator with almost periodic potential 1991 215 254

Cité par Sources :