Ergodicity of unipotent flows and Kleinian groups
Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 531-577 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $\mathcal {M}$ be a non-elementary convex cocompact hyperbolic $3$-manifold and $\delta$ be the critical exponent of its fundamental group. We prove that a one-dimensional unipotent flow for the frame bundle of $\mathcal {M}$ is ergodic for the Burger-Roblin measure if and only if $\delta >1$.
DOI : 10.1090/S0894-0347-2014-00811-0

Mohammadi, Amir  1   ; Oh, Hee  2

1 Department of Mathematics, The University of Texas at Austin, Austin, Texas 78750
2 Department of Mathematics, Yale University, New Haven, Connecticut 06520 and Korea Institute for Advanced Study, Seoul, Korea
@article{10_1090_S0894_0347_2014_00811_0,
     author = {Mohammadi, Amir and Oh, Hee},
     title = {Ergodicity of unipotent flows and {Kleinian} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {531--577},
     year = {2015},
     volume = {28},
     number = {2},
     doi = {10.1090/S0894-0347-2014-00811-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00811-0/}
}
TY  - JOUR
AU  - Mohammadi, Amir
AU  - Oh, Hee
TI  - Ergodicity of unipotent flows and Kleinian groups
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 531
EP  - 577
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00811-0/
DO  - 10.1090/S0894-0347-2014-00811-0
ID  - 10_1090_S0894_0347_2014_00811_0
ER  - 
%0 Journal Article
%A Mohammadi, Amir
%A Oh, Hee
%T Ergodicity of unipotent flows and Kleinian groups
%J Journal of the American Mathematical Society
%D 2015
%P 531-577
%V 28
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00811-0/
%R 10.1090/S0894-0347-2014-00811-0
%F 10_1090_S0894_0347_2014_00811_0
Mohammadi, Amir; Oh, Hee. Ergodicity of unipotent flows and Kleinian groups. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 531-577. doi: 10.1090/S0894-0347-2014-00811-0

[1] Aaronson, Jon An introduction to infinite ergodic theory 1997

[2] Babillot, Martine On the mixing property for hyperbolic systems Israel J. Math. 2002 61 76

[3] Brin, M. Ergodic theory of frame flows 1982 163 183

[4] Bowditch, B. H. Geometrical finiteness for hyperbolic groups J. Funct. Anal. 1993 245 317

[5] Burger, Marc Horocycle flow on geometrically finite surfaces Duke Math. J. 1990 779 803

[6] Canary, Richard D., Taylor, Edward Kleinian groups with small limit sets Duke Math. J. 1994 371 381

[7] Einsiedler, M., Lindenstrauss, E. Diagonal actions on locally homogeneous spaces 2010 155 241

[8] Falconer, Kenneth Fractal geometry 2003

[9] Flaminio, L., Spatzier, R. J. Geometrically finite groups, Patterson-Sullivan measures and Ratner’s rigidity theorem Invent. Math. 1990 601 626

[10] Hochman, Michael A ratio ergodic theorem for multiparameter non-singular actions J. Eur. Math. Soc. (JEMS) 2010 365 383

[11] Hopf, E Ergodentheorie Ergebnisse der Mathematik 1937

[12] Hu, Xiaoyu, Taylor, S. James Fractal properties of products and projections of measures in 𝑅^{𝑑} Math. Proc. Cambridge Philos. Soc. 1994 527 544

[13] Katok, A., Spatzier, R. J. Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778

[14] Krengel, Ulrich Ergodic theorems 1985

[15] Lindenstrauss, Elon Invariant measures and arithmetic quantum unique ergodicity Ann. of Math. (2) 2006 165 219

[16] Lions, J.-L., Magenes, E. Non-homogeneous boundary value problems and applications. Vol. I 1972

[17] Margulis, G. A. On the action of unipotent groups in the space of lattices 1975 365 370

[18] Margulis, G. A. Indefinite quadratic forms and unipotent flows on homogeneous spaces 1989 399 409

[19] Marstrand, J. M. Some fundamental geometrical properties of plane sets of fractional dimensions Proc. London Math. Soc. (3) 1954 257 302

[20] Mattila, Pertti Geometry of sets and measures in Euclidean spaces 1995

[21] Mattila, Pertti Hausdorff dimension, projections, and the Fourier transform Publ. Mat. 2004 3 48

[22] Moore, Calvin C. Ergodicity of flows on homogeneous spaces Amer. J. Math. 1966 154 178

[23] Moore, Calvin C. Ergodicity of flows on homogeneous spaces Amer. J. Math. 1966 154 178

[24] Oh, Hee, Shah, Nimish A. Equidistribution and counting for orbits of geometrically finite hyperbolic groups J. Amer. Math. Soc. 2013 511 562

[25] Otal, Jean-Pierre, Peigné, Marc Principe variationnel et groupes kleiniens Duke Math. J. 2004 15 44

[26] Patterson, S. J. The limit set of a Fuchsian group Acta Math. 1976 241 273

[27] Peigné, Marc On the Patterson-Sullivan measure of some discrete group of isometries Israel J. Math. 2003 77 88

[28] Peres, Yuval, Schlag, Wilhelm Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions Duke Math. J. 2000 193 251

[29] Ratner, Marina On measure rigidity of unipotent subgroups of semisimple groups Acta Math. 1990 229 309

[30] Ratner, Marina On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607

[31] Roblin, Thomas Ergodicité et équidistribution en courbure négative Mém. Soc. Math. Fr. (N.S.) 2003

[32] Roblin, Thomas Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques Ergodic Theory Dynam. Systems 2000 1785 1819

[33] Rudolph, Daniel J. Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold Ergodic Theory Dynam. Systems 1982

[34] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202

[35] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277

[36] Winter, D Mixing of frame flow for rank one locally symmetric spaces and measure classification

[37] Yau, Shing Tung Harmonic functions on complete Riemannian manifolds Comm. Pure Appl. Math. 1975 201 228

[38] Zweimüller, R. Hopf’s ratio ergodic theorem by inducing

Cité par Sources :