Mohammadi, Amir  1 ; Oh, Hee  2
@article{10_1090_S0894_0347_2014_00811_0,
author = {Mohammadi, Amir and Oh, Hee},
title = {Ergodicity of unipotent flows and {Kleinian} groups},
journal = {Journal of the American Mathematical Society},
pages = {531--577},
year = {2015},
volume = {28},
number = {2},
doi = {10.1090/S0894-0347-2014-00811-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00811-0/}
}
TY - JOUR AU - Mohammadi, Amir AU - Oh, Hee TI - Ergodicity of unipotent flows and Kleinian groups JO - Journal of the American Mathematical Society PY - 2015 SP - 531 EP - 577 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00811-0/ DO - 10.1090/S0894-0347-2014-00811-0 ID - 10_1090_S0894_0347_2014_00811_0 ER -
%0 Journal Article %A Mohammadi, Amir %A Oh, Hee %T Ergodicity of unipotent flows and Kleinian groups %J Journal of the American Mathematical Society %D 2015 %P 531-577 %V 28 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00811-0/ %R 10.1090/S0894-0347-2014-00811-0 %F 10_1090_S0894_0347_2014_00811_0
Mohammadi, Amir; Oh, Hee. Ergodicity of unipotent flows and Kleinian groups. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 531-577. doi: 10.1090/S0894-0347-2014-00811-0
[1] An introduction to infinite ergodic theory 1997
[2] On the mixing property for hyperbolic systems Israel J. Math. 2002 61 76
[3] Ergodic theory of frame flows 1982 163 183
[4] Geometrical finiteness for hyperbolic groups J. Funct. Anal. 1993 245 317
[5] Horocycle flow on geometrically finite surfaces Duke Math. J. 1990 779 803
[6] , Kleinian groups with small limit sets Duke Math. J. 1994 371 381
[7] , Diagonal actions on locally homogeneous spaces 2010 155 241
[8] Fractal geometry 2003
[9] , Geometrically finite groups, Patterson-Sullivan measures and Ratner’s rigidity theorem Invent. Math. 1990 601 626
[10] A ratio ergodic theorem for multiparameter non-singular actions J. Eur. Math. Soc. (JEMS) 2010 365 383
[11] Ergodentheorie Ergebnisse der Mathematik 1937
[12] , Fractal properties of products and projections of measures in 𝑅^{𝑑} Math. Proc. Cambridge Philos. Soc. 1994 527 544
[13] , Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778
[14] Ergodic theorems 1985
[15] Invariant measures and arithmetic quantum unique ergodicity Ann. of Math. (2) 2006 165 219
[16] , Non-homogeneous boundary value problems and applications. Vol. I 1972
[17] On the action of unipotent groups in the space of lattices 1975 365 370
[18] Indefinite quadratic forms and unipotent flows on homogeneous spaces 1989 399 409
[19] Some fundamental geometrical properties of plane sets of fractional dimensions Proc. London Math. Soc. (3) 1954 257 302
[20] Geometry of sets and measures in Euclidean spaces 1995
[21] Hausdorff dimension, projections, and the Fourier transform Publ. Mat. 2004 3 48
[22] Ergodicity of flows on homogeneous spaces Amer. J. Math. 1966 154 178
[23] Ergodicity of flows on homogeneous spaces Amer. J. Math. 1966 154 178
[24] , Equidistribution and counting for orbits of geometrically finite hyperbolic groups J. Amer. Math. Soc. 2013 511 562
[25] , Principe variationnel et groupes kleiniens Duke Math. J. 2004 15 44
[26] The limit set of a Fuchsian group Acta Math. 1976 241 273
[27] On the Patterson-Sullivan measure of some discrete group of isometries Israel J. Math. 2003 77 88
[28] , Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions Duke Math. J. 2000 193 251
[29] On measure rigidity of unipotent subgroups of semisimple groups Acta Math. 1990 229 309
[30] On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607
[31] Ergodicité et équidistribution en courbure négative Mém. Soc. Math. Fr. (N.S.) 2003
[32] Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques Ergodic Theory Dynam. Systems 2000 1785 1819
[33] Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold Ergodic Theory Dynam. Systems 1982
[34] The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202
[35] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277
[36] Mixing of frame flow for rank one locally symmetric spaces and measure classification
[37] Harmonic functions on complete Riemannian manifolds Comm. Pure Appl. Math. 1975 201 228
[38] Hopf’s ratio ergodic theorem by inducing
Cité par Sources :