Structure of measures in Lipschitz differentiability spaces
Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 421-482 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We prove the equivalence of two seemingly very different ways of generalising Rademacher’s theorem to metric measure spaces. One such generalisation is based upon the notion of forming partial derivatives along a very rich structure of Lipschitz curves in a way analogous to the differentiability theory of Euclidean spaces. This approach to differentiability in this generality appears here for the first time and by examining this structure further, we naturally arrive to several descriptions of Lipschitz differentiability spaces.
DOI : 10.1090/S0894-0347-2014-00810-9

Bate, David  1 , 2

1 Department of Mathematics, Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, UK
2 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Room 208C, Chicago, Illinois 60637
@article{10_1090_S0894_0347_2014_00810_9,
     author = {Bate, David},
     title = {Structure of measures in {Lipschitz} differentiability spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {421--482},
     year = {2015},
     volume = {28},
     number = {2},
     doi = {10.1090/S0894-0347-2014-00810-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00810-9/}
}
TY  - JOUR
AU  - Bate, David
TI  - Structure of measures in Lipschitz differentiability spaces
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 421
EP  - 482
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00810-9/
DO  - 10.1090/S0894-0347-2014-00810-9
ID  - 10_1090_S0894_0347_2014_00810_9
ER  - 
%0 Journal Article
%A Bate, David
%T Structure of measures in Lipschitz differentiability spaces
%J Journal of the American Mathematical Society
%D 2015
%P 421-482
%V 28
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00810-9/
%R 10.1090/S0894-0347-2014-00810-9
%F 10_1090_S0894_0347_2014_00810_9
Bate, David. Structure of measures in Lipschitz differentiability spaces. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 421-482. doi: 10.1090/S0894-0347-2014-00810-9

[1] Giovanni Alberti, Marianna Csörnyei, David Preiss Structure of null sets, differentiability of Lipschitz functions, and other problems

[2] Alberti, Giovanni, Csörnyei, Marianna, Preiss, David Differentiability of Lipschitz functions, structure of null sets, and other problems 2010 1379 1394

[3] Ambrosio, Luigi, Gigli, Nicola, Savaré, Giuseppe Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below Invent. Math. 2014 289 391

[4] Ambrosio, Luigi, Kirchheim, Bernd Rectifiable sets in metric and Banach spaces Math. Ann. 2000 527 555

[5] Alberti, Giovanni Rank one property for derivatives of functions with bounded variation Proc. Roy. Soc. Edinburgh Sect. A 1993 239 274

[6] Bernard, Patrick Young measures, superposition and transport Indiana Univ. Math. J. 2008 247 275

[7] Bate, David, Speight, Gareth Differentiability, porosity and doubling in metric measure spaces Proc. Amer. Math. Soc. 2013 971 985

[8] Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces Geom. Funct. Anal. 1999 428 517

[9] Cheeger, Jeff, Kleiner, Bruce Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property Geom. Funct. Anal. 2009 1017 1028

[10] Jasun Gong Rigidity of derivations in the plane and in metric measure spaces 2011

[11] Jasun Gong The Lip-lip condition on metric measure spaces 2012

[12] Heinonen, Juha Lectures on analysis on metric spaces 2001

[13] Kechris, Alexander S. Classical descriptive set theory 1995

[14] Keith, Stephen A differentiable structure for metric measure spaces Adv. Math. 2004 271 315

[15] Bruce Kleiner, John Mackay Differentiable structures on metric measure spaces: A primer 2011

[16] Lisini, Stefano Characterization of absolutely continuous curves in Wasserstein spaces Calc. Var. Partial Differential Equations 2007 85 120

[17] Mera, M. E., Morán, M., Preiss, D., Zajíček, L. Porosity, 𝜎-porosity and measures Nonlinearity 2003 247 255

[18] Paolini, Emanuele, Stepanov, Eugene Decomposition of acyclic normal currents in a metric space J. Funct. Anal. 2012 3358 3390

[19] Rudin, Walter Function theory in the unit ball of ℂⁿ 2008

[20] Smirnov, S. K. Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows Algebra i Analiz 1993 206 238

[21] Young, L. C. Lectures on the calculus of variations and optimal control theory 1969

Cité par Sources :