Voir la notice de l'article provenant de la source American Mathematical Society
Hacon, Christopher 1 ; Xu, Chenyang 2
@article{10_1090_S0894_0347_2014_00809_2,
author = {Hacon, Christopher and Xu, Chenyang},
title = {On the three dimensional minimal model program in positive characteristic},
journal = {Journal of the American Mathematical Society},
pages = {711--744},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2015},
doi = {10.1090/S0894-0347-2014-00809-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00809-2/}
}
TY - JOUR AU - Hacon, Christopher AU - Xu, Chenyang TI - On the three dimensional minimal model program in positive characteristic JO - Journal of the American Mathematical Society PY - 2015 SP - 711 EP - 744 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00809-2/ DO - 10.1090/S0894-0347-2014-00809-2 ID - 10_1090_S0894_0347_2014_00809_2 ER -
%0 Journal Article %A Hacon, Christopher %A Xu, Chenyang %T On the three dimensional minimal model program in positive characteristic %J Journal of the American Mathematical Society %D 2015 %P 711-744 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00809-2/ %R 10.1090/S0894-0347-2014-00809-2 %F 10_1090_S0894_0347_2014_00809_2
Hacon, Christopher; Xu, Chenyang. On the three dimensional minimal model program in positive characteristic. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 711-744. doi: 10.1090/S0894-0347-2014-00809-2
[1] Resolution of singularities of embedded algebraic surfaces 1998
[2] , , , Existence of minimal models for varieties of log general type J. Amer. Math. Soc. 2010 405 468
[3] , Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings J. Algebra 2008 1051 1082
[4] , Resolution of singularities of threefolds in positive characteristic. II J. Algebra 2009 1836 1976
[5] 3-fold flips after Shokurov 2007 18 48
[6] Resolution of singularities 2004
[7] Special termination and reduction to pl flips 2007 63 75
[8] , , Supplements to non-lc ideal sheaves 2011 1 46
[9] Classification of two-dimensional ð¹-regular and ð¹-pure singularities Adv. Math. 1998 33 53
[10] , Tight closure, invariant theory, and the Briançon-Skoda theorem J. Amer. Math. Soc. 1990 31 116
[11] , , Cartier modules on toric varieties Trans. Amer. Math. Soc. 2014 1773 1795
[12] Semistable minimal models of threefolds in positive or mixed characteristic J. Algebraic Geom. 1994 463 491
[13] Basepoint freeness for nef and big line bundles in positive characteristic Ann. of Math. (2) 1999 253 286
[14] Ample filters of invertible sheaves J. Algebra 2003 243 283
[15] Singularities of the minimal model program 2013
[16] , Birational geometry of log surfaces
[17] , Birational geometry of algebraic varieties 1998
[18] Classification of higher-dimensional varieties 1987 269 331
[19] , Frobenius splitting and cohomology vanishing for Schubert varieties Ann. of Math. (2) 1985 27 40
[20] , A Frobenius variant of Seshadri constants Math. Ann. 2014 861 878
[21] Semi-positivity in positive characteristics Annales scientifiques de lâÃcole Normale Supérieure
[22] Lectures on complements on log surfaces 2001
[23] ð¹-adjunction Algebra Number Theory 2009 907 950
[24] Centers of ð¹-purity Math. Z. 2010 687 714
[25] A canonical linear system associated to adjoint divisors in characteristic ð>0 Journal für die reine und angewandte Mathematik
[26]
[27] , Globally ð¹-regular and log Fano varieties Adv. Math. 2010 863 894
[28] , On the behavior of test ideals under finite morphisms J. Algebraic Geom. 2014 399 443
[29] , A survey of test ideals 2012 39 99
[30] Three-dimensional log perestroikas Izv. Ross. Akad. Nauk Ser. Mat. 1992 105 203
[31] Complements on surfaces J. Math. Sci. (New York) 2000 3876 3932
[32] Minimal models and abundance for positive characteristic log surfaces Nagoya Math. J.
[33] X-method for klt surfaces in positive characteristic J. Algebraic Geom.
[34] ð¹-regular and ð¹-pure normal graded rings J. Pure Appl. Algebra 1991 341 350
Cité par Sources :