On the three dimensional minimal model program in positive characteristic
Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 711-744

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f:(X,B)\to Z$ be a threefold extremal dlt flipping contraction defined over an algebraically closed field of characteristic $p>5$, such that the coefficients of $\{ B\}$ are in the standard set $\{ 1-\frac 1n|n\in \mathbb N\}$, then the flip of $f$ exists. As a consequence, we prove the existence of minimal models for any projective ${\mathbb Q}$-factorial terminal variety $X$ with pseudo-effective canonical divisor $K_X$.
DOI : 10.1090/S0894-0347-2014-00809-2

Hacon, Christopher 1 ; Xu, Chenyang 2

1 Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 48112-0090
2 Beijing International Center of Mathematics Research, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
@article{10_1090_S0894_0347_2014_00809_2,
     author = {Hacon, Christopher and Xu, Chenyang},
     title = {On the three dimensional minimal model program in positive characteristic},
     journal = {Journal of the American Mathematical Society},
     pages = {711--744},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00809-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00809-2/}
}
TY  - JOUR
AU  - Hacon, Christopher
AU  - Xu, Chenyang
TI  - On the three dimensional minimal model program in positive characteristic
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 711
EP  - 744
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00809-2/
DO  - 10.1090/S0894-0347-2014-00809-2
ID  - 10_1090_S0894_0347_2014_00809_2
ER  - 
%0 Journal Article
%A Hacon, Christopher
%A Xu, Chenyang
%T On the three dimensional minimal model program in positive characteristic
%J Journal of the American Mathematical Society
%D 2015
%P 711-744
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00809-2/
%R 10.1090/S0894-0347-2014-00809-2
%F 10_1090_S0894_0347_2014_00809_2
Hacon, Christopher; Xu, Chenyang. On the three dimensional minimal model program in positive characteristic. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 711-744. doi: 10.1090/S0894-0347-2014-00809-2

[1] Abhyankar, S. S. Resolution of singularities of embedded algebraic surfaces 1998

[2] Birkar, Caucher, Cascini, Paolo, Hacon, Christopher, Mckernan, James Existence of minimal models for varieties of log general type J. Amer. Math. Soc. 2010 405 468

[3] Cossart, Vincent, Piltant, Olivier Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings J. Algebra 2008 1051 1082

[4] Cossart, Vincent, Piltant, Olivier Resolution of singularities of threefolds in positive characteristic. II J. Algebra 2009 1836 1976

[5] Corti, Alessio 3-fold flips after Shokurov 2007 18 48

[6] Cutkosky, Steven Dale Resolution of singularities 2004

[7] Fujino, Osamu Special termination and reduction to pl flips 2007 63 75

[8] Fujino, Osamu, Schwede, Karl, Takagi, Shunsuke Supplements to non-lc ideal sheaves 2011 1 46

[9] Hara, Nobuo Classification of two-dimensional 𝐹-regular and 𝐹-pure singularities Adv. Math. 1998 33 53

[10] Hochster, Melvin, Huneke, Craig Tight closure, invariant theory, and the Briançon-Skoda theorem J. Amer. Math. Soc. 1990 31 116

[11] Hsiao, Jen-Chieh, Schwede, Karl, Zhang, Wenliang Cartier modules on toric varieties Trans. Amer. Math. Soc. 2014 1773 1795

[12] Kawamata, Yujiro Semistable minimal models of threefolds in positive or mixed characteristic J. Algebraic Geom. 1994 463 491

[13] Keel, Seã¡N Basepoint freeness for nef and big line bundles in positive characteristic Ann. of Math. (2) 1999 253 286

[14] Keeler, Dennis S. Ample filters of invertible sheaves J. Algebra 2003 243 283

[15] Kollã¡R, Jã¡Nos Singularities of the minimal model program 2013

[16] K. Kollã¡R, S. Kovã¡Cs Birational geometry of log surfaces

[17] Kollã¡R, Jã¡Nos, Mori, Shigefumi Birational geometry of algebraic varieties 1998

[18] Mori, Shigefumi Classification of higher-dimensional varieties 1987 269 331

[19] Mehta, V. B., Ramanathan, A. Frobenius splitting and cohomology vanishing for Schubert varieties Ann. of Math. (2) 1985 27 40

[20] Mustaå£Äƒ, Mircea, Schwede, Karl A Frobenius variant of Seshadri constants Math. Ann. 2014 861 878

[21] Z. Patakfalvi Semi-positivity in positive characteristics Annales scientifiques de l’École Normale Supérieure

[22] Prokhorov, Yuri G. Lectures on complements on log surfaces 2001

[23] Schwede, Karl 𝐹-adjunction Algebra Number Theory 2009 907 950

[24] Schwede, Karl Centers of 𝐹-purity Math. Z. 2010 687 714

[25] K. Schwede A canonical linear system associated to adjoint divisors in characteristic 𝑝>0 Journal für die reine und angewandte Mathematik

[26] K. Schwede

[27] Schwede, Karl, Smith, Karen E. Globally 𝐹-regular and log Fano varieties Adv. Math. 2010 863 894

[28] K. Schwede, K. Tucker On the behavior of test ideals under finite morphisms J. Algebraic Geom. 2014 399 443

[29] Schwede, Karl, Tucker, Kevin A survey of test ideals 2012 39 99

[30] Shokurov, V. V. Three-dimensional log perestroikas Izv. Ross. Akad. Nauk Ser. Mat. 1992 105 203

[31] Shokurov, V. V. Complements on surfaces J. Math. Sci. (New York) 2000 3876 3932

[32] H. Tanaka Minimal models and abundance for positive characteristic log surfaces Nagoya Math. J.

[33] H. Tanaka X-method for klt surfaces in positive characteristic J. Algebraic Geom.

[34] Watanabe, Keiichi 𝐹-regular and 𝐹-pure normal graded rings J. Pure Appl. Algebra 1991 341 350

Cité par Sources :