Relations on \overline{ℳ}_{ℊ,𝓃} via 3-spin structures
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 279-309

Voir la notice de l'article provenant de la source American Mathematical Society

Witten’s class on the moduli space of 3-spin curves defines a (non-semisimple) cohomological field theory. After a canonical modification, we construct an associated semisimple CohFT with a non-trivial vanishing property obtained from the homogeneity of Witten’s class. Using the classification of semisimple CohFTs by Givental-Teleman, we derive two main results. The first is an explicit formula in the tautological ring of $\overline {\mathcal {M}}_{g,n}$ for Witten’s class. The second, using the vanishing property, is the construction of relations in the tautological ring of $\overline {\mathcal {M}}_{g,n}$. Pixton has previously conjectured a system of tautological relations on $\overline {\mathcal {M}}_{g,n}$ (which extends the established Faber-Zagier relations on $\mathcal {M}_{g}$). Our 3-spin construction exactly yields Pixton’s conjectured relations. As the classification of CohFTs is a topological result depending upon the Madsen-Weiss theorem (Mumford’s conjecture), our construction proves relations in cohomology. The study of Witten’s class and the associated tautological relations for $r$-spin curves via a parallel strategy will be taken up in a following paper.
DOI : 10.1090/S0894-0347-2014-00808-0

Pandharipande, Rahul 1 ; Pixton, Aaron 2 ; Zvonkine, Dimitri 3

1 Departement Mathematik, ETH Zürich 8092, Switzerland
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
3 CNRS, Institut Mathématique de Jussieu, 4 place Jussieu 75005 Paris, France
@article{10_1090_S0894_0347_2014_00808_0,
     author = {Pandharipande, Rahul and Pixton, Aaron and Zvonkine, Dimitri},
     title = {Relations on \overline{\^a„{\textthreesuperior}}_{\^a„Š,{\dh}“ƒ} via 3-spin structures},
     journal = {Journal of the American Mathematical Society},
     pages = {279--309},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00808-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00808-0/}
}
TY  - JOUR
AU  - Pandharipande, Rahul
AU  - Pixton, Aaron
AU  - Zvonkine, Dimitri
TI  - Relations on \overline{ℳ}_{ℊ,𝓃} via 3-spin structures
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 279
EP  - 309
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00808-0/
DO  - 10.1090/S0894-0347-2014-00808-0
ID  - 10_1090_S0894_0347_2014_00808_0
ER  - 
%0 Journal Article
%A Pandharipande, Rahul
%A Pixton, Aaron
%A Zvonkine, Dimitri
%T Relations on \overline{ℳ}_{ℊ,𝓃} via 3-spin structures
%J Journal of the American Mathematical Society
%D 2015
%P 279-309
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00808-0/
%R 10.1090/S0894-0347-2014-00808-0
%F 10_1090_S0894_0347_2014_00808_0
Pandharipande, Rahul; Pixton, Aaron; Zvonkine, Dimitri. Relations on \overline{ℳ}_{ℊ,𝓃} via 3-spin structures. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 279-309. doi: 10.1090/S0894-0347-2014-00808-0

[1] Belorousski, Pavel, Pandharipande, Rahul A descendent relation in genus 2 Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2000 171 191

[2] Chiodo, Alessandro The Witten top Chern class via 𝐾-theory J. Algebraic Geom. 2006 681 707

[3] B. Dubrovin Geometry of 2d topological field theories

[4] Dubrovin, Boris On almost duality for Frobenius manifolds 2004 75 132

[5] Getzler, E. Intersection theory on \overline{ℳ}_{1,4} and elliptic Gromov-Witten invariants J. Amer. Math. Soc. 1997 973 998

[6] Givental, Alexander B. Gromov-Witten invariants and quantization of quadratic Hamiltonians Mosc. Math. J. 2001

[7] Givental, Alexander B. Semisimple Frobenius structures at higher genus Internat. Math. Res. Notices 2001 1265 1286

[8] Graber, T., Pandharipande, R. Constructions of nontautological classes on moduli spaces of curves Michigan Math. J. 2003 93 109

[9] Fan, Huijun, Jarvis, Tyler, Ruan, Yongbin The Witten equation, mirror symmetry, and quantum singularity theory Ann. of Math. (2) 2013 1 106

[10] Ionel, Eleny-Nicoleta Relations in the tautological ring of ℳ_{ℊ} Duke Math. J. 2005 157 186

[11] Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry [ MR1291244 (95i:14049)] 1997 607 653

[12] Mochizuki, Takuro The virtual class of the moduli stack of stable 𝑟-spin curves Comm. Math. Phys. 2006 1 40

[13] Mumford, David Towards an enumerative geometry of the moduli space of curves 1983 271 328

[14] R. Pandharipande, A. Pixton Relations in the tautological ring of the moduli space of curves

[15] R. Pandharipande, A. Pixton, D. Zvonkine

[16] A. Pixton Conjectural relations in the tautological ring of \overline{ℳ}_{ℊ,𝓃}

[17] Polishchuk, Alexander, Vaintrob, Arkady Algebraic construction of Witten’s top Chern class 2001 229 249

[18] Polishchuk, Alexander Witten’s top Chern class on the moduli space of higher spin curves 2004 253 264

[19] Shadrin, Sergey BCOV theory via Givental group action on cohomological fields theories Mosc. Math. J. 2009

[20] Teleman, Constantin The structure of 2D semi-simple field theories Invent. Math. 2012 525 588

[21] Witten, Edward Algebraic geometry associated with matrix models of two-dimensional gravity 1993 235 269

Cité par Sources :