Fundamental groups of links of isolated singularities
Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 929-952

Voir la notice de l'article provenant de la source American Mathematical Society

We study fundamental groups of projective varieties with normal crossing singularities and of germs of complex singularities. We prove that for every finitely-presented group $G$ there is a complex projective surface $S$ with simple normal crossing singularities only, so that the fundamental group of $S$ is isomorphic to $G$. We use this to construct 3-dimensional isolated complex singularities so that the fundamental group of the link is isomorphic to $G$. Lastly, we prove that a finitely-presented group $G$ is ${\mathbb Q}$-superperfect (has vanishing rational homology in dimensions 1 and 2) if and only if $G$ is isomorphic to the fundamental group of the link of a rational 6-dimensional complex singularity.
DOI : 10.1090/S0894-0347-2014-00807-9

Kapovich, Michael 1 ; Kollár, János 2

1 Department of Mathematics, University of California, Davis, California 95616
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
@article{10_1090_S0894_0347_2014_00807_9,
     author = {Kapovich, Michael and Koll\~A{\textexclamdown}r, J\~A{\textexclamdown}nos},
     title = {Fundamental groups of links of isolated singularities},
     journal = {Journal of the American Mathematical Society},
     pages = {929--952},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00807-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00807-9/}
}
TY  - JOUR
AU  - Kapovich, Michael
AU  - Kollár, János
TI  - Fundamental groups of links of isolated singularities
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 929
EP  - 952
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00807-9/
DO  - 10.1090/S0894-0347-2014-00807-9
ID  - 10_1090_S0894_0347_2014_00807_9
ER  - 
%0 Journal Article
%A Kapovich, Michael
%A Kollár, János
%T Fundamental groups of links of isolated singularities
%J Journal of the American Mathematical Society
%D 2014
%P 929-952
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00807-9/
%R 10.1090/S0894-0347-2014-00807-9
%F 10_1090_S0894_0347_2014_00807_9
Kapovich, Michael; Kollár, János. Fundamental groups of links of isolated singularities. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 929-952. doi: 10.1090/S0894-0347-2014-00807-9

[1] Amorã³S, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D. Fundamental groups of compact Kähler manifolds 1996

[2] D. Arapura, P. Bakhatry, J. Wå‚Odarczyk The combinatorial part of the cohomology of a singular variety 2009

[3] Artin, M. Algebraization of formal moduli. II. Existence of modifications Ann. of Math. (2) 1970 88 135

[4] Berrick, A. J. A topologist’s view of perfect and acyclic groups 2002 1 28

[5] Bridson, Martin R., Grunewald, Fritz J. Grothendieck’s problems concerning profinite completions and representations of groups Ann. of Math. (2) 2004 359 373

[6] Cairns, Stewart S. A simple triangulation method for smooth manifolds Bull. Amer. Math. Soc. 1961 389 390

[7] Campbell, Colin M., Havas, George, Ramsay, Colin, Robertson, Edmund F. Nice efficient presentations for all small simple groups and their covers LMS J. Comput. Math. 2004 266 283

[8] Classification of irregular varieties 1992

[9] Corson, Jon Michael Complexes of groups Proc. London Math. Soc. (3) 1992 199 224

[10] Corlette, Kevin, Simpson, Carlos On the classification of rank-two representations of quasiprojective fundamental groups Compos. Math. 2008 1271 1331

[11] Davis, Michael W. The geometry and topology of Coxeter groups 2008

[12] Dimca, Alexandru, Papadima, ŞTefan, Suciu, Alexander I. Topology and geometry of cohomology jump loci Duke Math. J. 2009 405 457

[13] Draniå¡Nikov, A. N., Repovå¡, D. Embeddings up to homotopy type in Euclidean space Bull. Austral. Math. Soc. 1993 145 148

[14] Ferrand, Daniel Conducteur, descente et pincement Bull. Soc. Math. France 2003 553 585

[15] The birational geometry of degenerations 1983

[16] Fortune, Steven Voronoi diagrams and Delaunay triangulations 1997 377 388

[17] Goresky, Mark, Macpherson, Robert Stratified Morse theory 1988

[18] Gordon, Gerald Leonard On a simplicial complex associated to the monodromy Trans. Amer. Math. Soc. 1980 93 101

[19] Grothendieck, Alexander Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (𝑆𝐺𝐴 2) 1968

[20] Griffiths, Phillip, Schmid, Wilfried Recent developments in Hodge theory: a discussion of techniques and results 1975 31 127

[21] Hartshorne, Robin Algebraic geometry 1977

[22] Hatcher, Allen Algebraic topology 2002

[23] Higman, Graham A finitely generated infinite simple group J. London Math. Soc. 1951 61 64

[24] Hirsch, Morris W. Smooth regular neighborhoods Ann. of Math. (2) 1962 524 530

[25] Hopf, Heinz Fundamentalgruppe und zweite Bettische Gruppe Comment. Math. Helv. 1942 257 309

[26] Hausmann, Jean-Claude, Weinberger, Shmuel Caractéristiques d’Euler et groupes fondamentaux des variétés de dimension 4 Comment. Math. Helv. 1985 139 144

[27] Ishii, Shihoko On isolated Gorenstein singularities Math. Ann. 1985 541 554

[28] Kapovich, Michael Conformally flat metrics on 4-manifolds J. Differential Geom. 2004 289 301

[29] Kervaire, Michel A. Smooth homology spheres and their fundamental groups Trans. Amer. Math. Soc. 1969 67 72

[30] Kervaire, Michel A., Milnor, John W. Groups of homotopy spheres. I Ann. of Math. (2) 1963 504 537

[31] Kapovich, Michael, Millson, John J. On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties Inst. Hautes Études Sci. Publ. Math. 1998

[32] Kollã¡R, Jã¡Nos, Mori, Shigefumi Birational geometry of algebraic varieties 1998

[33] Kollã¡R, Jã¡Nos Shafarevich maps and plurigenera of algebraic varieties Invent. Math. 1993 177 215

[34] Jã¡Nos Kollã¡R Quotients by finite equivalence relations 2008

[35] Jã¡Nos Kollã¡R New examples of terminal and log canonical singularities 2011

[36] Kulikov, Vik. S. Degenerations of 𝐾3 surfaces and Enriques surfaces Izv. Akad. Nauk SSSR Ser. Mat. 1977

[37] Livingston, Charles Four-manifolds of large negative deficiency Math. Proc. Cambridge Philos. Soc. 2005 107 115

[38] Morgan, John W. The algebraic topology of smooth algebraic varieties Inst. Hautes Études Sci. Publ. Math. 1978 137 204

[39] Mumford, David The topology of normal singularities of an algebraic surface and a criterion for simplicity Inst. Hautes Études Sci. Publ. Math. 1961 5 22

[40] Sam Payne Lecture at MSRI 2009

[41] Sam Payne Boundary complexes and weight filtrations 2011

[42] Persson, Ulf On degenerations of algebraic surfaces Mem. Amer. Math. Soc. 1977

[43] Phillips, Anthony Submersions of open manifolds Topology 1967 171 206

[44] Prasad, Gopal, Yeung, Sai-Kee Fake projective planes Invent. Math. 2007 321 370

[45] Simpson, Carlos Local systems on proper algebraic 𝑉-manifolds Pure Appl. Math. Q. 2011 1675 1759

[46] Steenbrink, J. H. M. Mixed Hodge structures associated with isolated singularities 1983 513 536

[47] Stepanov, D. A. A note on resolution of rational and hypersurface singularities Proc. Amer. Math. Soc. 2008 2647 2654

[48] Takayama, Shigeharu Local simple connectedness of resolutions of log-terminal singularities Internat. J. Math. 2003 825 836

[49] Thuillier, Amaury Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels Manuscripta Math. 2007 381 451

[50] Toledo, Domingo Projective varieties with non-residually finite fundamental group Inst. Hautes Études Sci. Publ. Math. 1993 103 119

[51] Wå‚Odarczyk, Jaroså‚Aw Toroidal varieties and the weak factorization theorem Invent. Math. 2003 223 331

Cité par Sources :