Voir la notice de l'article provenant de la source American Mathematical Society
Boucksom, Sébastien 1 ; Favre, Charles 2 ; Jonsson, Mattias 3
@article{10_1090_S0894_0347_2014_00806_7,
author = {Boucksom, S\~A{\textcopyright}bastien and Favre, Charles and Jonsson, Mattias},
title = {Solution to a {non-Archimedean} {Monge-Amp\~A{\textasciidieresis}re} equation},
journal = {Journal of the American Mathematical Society},
pages = {617--667},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2015},
doi = {10.1090/S0894-0347-2014-00806-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00806-7/}
}
TY - JOUR AU - Boucksom, Sébastien AU - Favre, Charles AU - Jonsson, Mattias TI - Solution to a non-Archimedean Monge-Ampère equation JO - Journal of the American Mathematical Society PY - 2015 SP - 617 EP - 667 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00806-7/ DO - 10.1090/S0894-0347-2014-00806-7 ID - 10_1090_S0894_0347_2014_00806_7 ER -
%0 Journal Article %A Boucksom, Sébastien %A Favre, Charles %A Jonsson, Mattias %T Solution to a non-Archimedean Monge-Ampère equation %J Journal of the American Mathematical Society %D 2015 %P 617-667 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00806-7/ %R 10.1090/S0894-0347-2014-00806-7 %F 10_1090_S0894_0347_2014_00806_7
Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias. Solution to a non-Archimedean Monge-Ampère equation. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 617-667. doi: 10.1090/S0894-0347-2014-00806-7
[1] On the theory of mixed volumes of convex bodies III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. (Russian) Mat. Sbornik 1938 27 44
[2] , Potential theory and dynamics on the Berkovich projective line 2010
[3] Spectral theory and analytic geometry over non-Archimedean fields 1990
[4] Smooth ð-adic analytic spaces are locally contractible Invent. Math. 1999 1 84
[5] , Growth of balls of holomorphic sections and energy at equilibrium Invent. Math. 2010 337 394
[6] , , , A variational approach to complex Monge-Ampère equations Publ. Math. Inst. Hautes Ãtudes Sci. 2013 179 245
[7] , A new capacity for plurisubharmonic functions Acta Math. 1982 1 40
[8] , Fine topology, Å ilov boundary, and (ðð^{ð})â¿ J. Funct. Anal. 1987 225 251
[9] , , Non-Archimedean Arakelov theory J. Algebraic Geom. 1995 427 485
[10] Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 1697 1701
[11] , On regularization of plurisubharmonic functions on manifolds Proc. Amer. Math. Soc. 2007 2089 2093
[12] , , , The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension J. Algebraic Geom. 2013 201 248
[13] , , , Monge-Ampère equations in big cohomology classes Acta Math. 2010 199 262
[14] , , Valuations and plurisubharmonic singularities Publ. Res. Inst. Math. Sci. 2008 449 494
[15] , , Differentiability of volumes of divisors and a problem of Teissier J. Algebraic Geom. 2009 279 308
[16] , , Arithmetic geometry of toric varieties. Metrics, measures, and heights
[17] Pluricomplex energy Acta Math. 1998 187 217
[18] Mesures et équidistribution sur les espaces de Berkovich J. Reine Angew. Math. 2006 215 235
[19] Heights and measures on analytic spaces. A survey of recent results, and some remarks 2011 1 50
[20] , Formes différentielles réelles et courants sur les espaces de Berkovich
[21] Regularization of closed positive currents and intersection theory J. Algebraic Geom. 1992 361 409
[22] Uniqueness in â°(ð³,ð) J. Funct. Anal. 2009 2113 2122
[23] Ãléments de géométrie algébrique Publ. Math. IHES.
[24] , , Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639
[25] , The valuative tree 2004
[26] Real analysis 1999
[27] Introduction to toric varieties 1993
[28] Intersection theory 1998
[29] Equidistribution over function fields Manuscripta Math. 2008 485 510
[30] A guide to tropicalizations 2013 125 189
[31] Forms and currents on the analytification of an algebraic variety (after Chambert-Loir and Ducros)
[32] , Intrinsic capacities on compact Kähler manifolds J. Geom. Anal. 2005 607 639
[33] , The weighted Monge-Ampère energy of quasiplurisubharmonic functions J. Funct. Anal. 2007 442 482
[34] , Valuations and asymptotic invariants for sequences of ideals Ann. Inst. Fourier (Grenoble) 2012
[35] , , , Toroidal embeddings. I 1973
[36] The complex Monge-Ampère equation Acta Math. 1998 69 117
[37] The Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 667 686
[38] , Non-Archimedean Kähler geometry
[39] Positivity in algebraic geometry. I 2004
[40] A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties J. Differential Geom. 2011 87 110
[41] The criteria for algebraic equivalence and the torsion group Amer. J. Math. 1957 53 66
[42] , Néron-Severi groups under specialization Duke Math. J. 2012 2167 2206
[43] , Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton
[44] , The essential skeleton of a degeneration of algebraic varieties
[45] Zariski-decomposition and abundance 2004
[46] , The Dirichlet problem for the multidimensional Monge-Ampère equation Rocky Mountain J. Math. 1977 345 364
[47] Corps locaux 1968 245
[48] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie dâArakelov.
[49] Canonical metrics in Kähler geometry 2000
[50] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411
[51] , The arithmetic Hodge Theorem for adelic line bundles I
[52] , The arithmetic Hodge Theorem for adelic line bundles II
[53] Positive line bundles on arithmetic varieties J. Amer. Math. Soc. 1995 187 221
Cité par Sources :