Solution to a non-Archimedean Monge-Ampère equation
Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 617-667

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ be a smooth projective Berkovich space over a complete discrete valuation field $K$ of residue characteristic zero, and assume that $X$ is defined over a function field admitting $K$ as a completion. Let further $\mu$ be a positive measure on $X$ and $L$ be an ample line bundle such that the mass of $\mu$ is equal to the degree of $L$. We prove the existence of a continuous semipositive metric whose associated measure is equal to $\mu$ in the sense of Zhang and Chambert-Loir. We do this under a technical assumption on the support of $\mu$, which is, for instance, fulfilled if the support is a finite set of divisorial points. Our method draws on analogs of the variational approach developed to solve complex Monge-Ampère equations on compact Kähler manifolds by Berman, Guedj, Zeriahi, and the first named author, and of Kołodziej’s $C^0$-estimates. It relies in a crucial way on the compactness properties of singular semipositive metrics, as defined and studied in a companion article.
DOI : 10.1090/S0894-0347-2014-00806-7

Boucksom, Sébastien 1 ; Favre, Charles 2 ; Jonsson, Mattias 3

1 CNRS–Université Pierre et Marie Curie, Institut de Mathématiques, F-75251 Paris Cedex 05, France
2 CNRS–CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France
3 Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043
@article{10_1090_S0894_0347_2014_00806_7,
     author = {Boucksom, S\~A{\textcopyright}bastien and Favre, Charles and Jonsson, Mattias},
     title = {Solution to a {non-Archimedean} {Monge-Amp\~A{\textasciidieresis}re} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {617--667},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00806-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00806-7/}
}
TY  - JOUR
AU  - Boucksom, Sébastien
AU  - Favre, Charles
AU  - Jonsson, Mattias
TI  - Solution to a non-Archimedean Monge-Ampère equation
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 617
EP  - 667
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00806-7/
DO  - 10.1090/S0894-0347-2014-00806-7
ID  - 10_1090_S0894_0347_2014_00806_7
ER  - 
%0 Journal Article
%A Boucksom, Sébastien
%A Favre, Charles
%A Jonsson, Mattias
%T Solution to a non-Archimedean Monge-Ampère equation
%J Journal of the American Mathematical Society
%D 2015
%P 617-667
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00806-7/
%R 10.1090/S0894-0347-2014-00806-7
%F 10_1090_S0894_0347_2014_00806_7
Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias. Solution to a non-Archimedean Monge-Ampère equation. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 617-667. doi: 10.1090/S0894-0347-2014-00806-7

[1] Alexandrov A. D. On the theory of mixed volumes of convex bodies III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. (Russian) Mat. Sbornik 1938 27 44

[2] Baker, Matthew, Rumely, Robert Potential theory and dynamics on the Berkovich projective line 2010

[3] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields 1990

[4] Berkovich, Vladimir G. Smooth 𝑝-adic analytic spaces are locally contractible Invent. Math. 1999 1 84

[5] Berman, Robert, Boucksom, Sã©Bastien Growth of balls of holomorphic sections and energy at equilibrium Invent. Math. 2010 337 394

[6] Berman, Robert J., Boucksom, Sã©Bastien, Guedj, Vincent, Zeriahi, Ahmed A variational approach to complex Monge-Ampère equations Publ. Math. Inst. Hautes Études Sci. 2013 179 245

[7] Bedford, Eric, Taylor, B. A. A new capacity for plurisubharmonic functions Acta Math. 1982 1 40

[8] Bedford, Eric, Taylor, B. A. Fine topology, Šilov boundary, and (𝑑𝑑^{𝑐})ⁿ J. Funct. Anal. 1987 225 251

[9] Bloch, S., Gillet, H., Soulã©, C. Non-Archimedean Arakelov theory J. Algebraic Geom. 1995 427 485

[10] Bå‚Ocki, Zbigniew Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 1697 1701

[11] Bå‚Ocki, Zbigniew, Koå‚Odziej, Så‚Awomir On regularization of plurisubharmonic functions on manifolds Proc. Amer. Math. Soc. 2007 2089 2093

[12] Boucksom, Sã©Bastien, Demailly, Jean-Pierre, PäƒUn, Mihai, Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension J. Algebraic Geom. 2013 201 248

[13] Boucksom, Sã©Bastien, Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Monge-Ampère equations in big cohomology classes Acta Math. 2010 199 262

[14] Boucksom, Sã©Bastien, Favre, Charles, Jonsson, Mattias Valuations and plurisubharmonic singularities Publ. Res. Inst. Math. Sci. 2008 449 494

[15] Boucksom, Sã©Bastien, Favre, Charles, Jonsson, Mattias Differentiability of volumes of divisors and a problem of Teissier J. Algebraic Geom. 2009 279 308

[16] Burgos J. I., Philippon P., Sombra M. Arithmetic geometry of toric varieties. Metrics, measures, and heights

[17] Cegrell, Urban Pluricomplex energy Acta Math. 1998 187 217

[18] Chambert-Loir, Antoine Mesures et équidistribution sur les espaces de Berkovich J. Reine Angew. Math. 2006 215 235

[19] Chambert-Loir, Antoine Heights and measures on analytic spaces. A survey of recent results, and some remarks 2011 1 50

[20] Chambert-Loir A., Ducros A. Formes différentielles réelles et courants sur les espaces de Berkovich

[21] Demailly, Jean-Pierre Regularization of closed positive currents and intersection theory J. Algebraic Geom. 1992 361 409

[22] Dinew, Så‚Awomir Uniqueness in ℰ(𝒳,𝜔) J. Funct. Anal. 2009 2113 2122

[23] Grothendieck A. Éléments de géométrie algébrique Publ. Math. IHES.

[24] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639

[25] Favre, Charles, Jonsson, Mattias The valuative tree 2004

[26] Folland, Gerald B. Real analysis 1999

[27] Fulton, William Introduction to toric varieties 1993

[28] Fulton, William Intersection theory 1998

[29] Gubler, Walter Equidistribution over function fields Manuscripta Math. 2008 485 510

[30] Gubler, Walter A guide to tropicalizations 2013 125 189

[31] Gubler W. Forms and currents on the analytification of an algebraic variety (after Chambert-Loir and Ducros)

[32] Guedj, Vincent, Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds J. Geom. Anal. 2005 607 639

[33] Guedj, Vincent, Zeriahi, Ahmed The weighted Monge-Ampère energy of quasiplurisubharmonic functions J. Funct. Anal. 2007 442 482

[34] Jonsson, Mattias, Mustaå£Äƒ, Mircea Valuations and asymptotic invariants for sequences of ideals Ann. Inst. Fourier (Grenoble) 2012

[35] Kempf, G., Knudsen, Finn Faye, Mumford, D., Saint-Donat, B. Toroidal embeddings. I 1973

[36] Koå‚Odziej, Så‚Awomir The complex Monge-Ampère equation Acta Math. 1998 69 117

[37] Koå‚Odziej, Så‚Awomir The Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 667 686

[38] Kontsevich M., Tschinkel Y. Non-Archimedean Kähler geometry

[39] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[40] Liu, Yifeng A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties J. Differential Geom. 2011 87 110

[41] Matsusaka, T. The criteria for algebraic equivalence and the torsion group Amer. J. Math. 1957 53 66

[42] Maulik, Davesh, Poonen, Bjorn Néron-Severi groups under specialization Duke Math. J. 2012 2167 2206

[43] Mustaå£ÇŽ M., Nicaise J. Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton

[44] Nicaise J., Xu C. The essential skeleton of a degeneration of algebraic varieties

[45] Nakayama, Noboru Zariski-decomposition and abundance 2004

[46] Rauch, Jeffrey, Taylor, B. A. The Dirichlet problem for the multidimensional Monge-Ampère equation Rocky Mountain J. Math. 1977 345 364

[47] Serre, Jean-Pierre Corps locaux 1968 245

[48] Thuillier A. Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov.

[49] Tian, Gang Canonical metrics in Kähler geometry 2000

[50] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[51] Yuan X., Zhang S.-W. The arithmetic Hodge Theorem for adelic line bundles I

[52] Yuan X., Zhang S.-W. The arithmetic Hodge Theorem for adelic line bundles II

[53] Zhang, Shouwu Positive line bundles on arithmetic varieties J. Amer. Math. Soc. 1995 187 221

Cité par Sources :