Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators
Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 483-529

Voir la notice de l'article provenant de la source American Mathematical Society

We consider divergence form elliptic operators $L= {-}\mathrm {div} A(x) \nabla$, defined in the half space $\mathbb {R}^{n+1}_+$, $n\geq 2$, where the coefficient matrix $A(x)$ is bounded, measurable, uniformly elliptic, $t$-independent, and not necessarily symmetric. We establish square function/non-tangential maximal function estimates for solutions of the homogeneous equation $Lu=0$, and we then combine these estimates with the method of “$\epsilon$-approximability” to show that $L$-harmonic measure is absolutely continuous with respect to surface measure (i.e., n-dimensional Lebesgue measure) on the boundary, in a scale-invariant sense: more precisely, that it belongs to the class $A_\infty$ with respect to surface measure (equivalently, that the Dirichlet problem is solvable with data in $L^p$, for some $p\infty$). Previously, these results had been known only in the case $n=1$.
DOI : 10.1090/S0894-0347-2014-00805-5

Hofmann, Steve 1 ; Kenig, Carlos 2 ; Mayboroda, Svitlana 3 ; Pipher, Jill 4

1 Department of Mathematics, University of Missouri, Columbia, Missouri 65211
2 Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
3 School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455
4 Department of Mathematics, Brown University, Providence, Rhode Island 02912
@article{10_1090_S0894_0347_2014_00805_5,
     author = {Hofmann, Steve and Kenig, Carlos and Mayboroda, Svitlana and Pipher, Jill},
     title = {Square function/non-tangential maximal function estimates and the {Dirichlet} problem for non-symmetric elliptic operators},
     journal = {Journal of the American Mathematical Society},
     pages = {483--529},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00805-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00805-5/}
}
TY  - JOUR
AU  - Hofmann, Steve
AU  - Kenig, Carlos
AU  - Mayboroda, Svitlana
AU  - Pipher, Jill
TI  - Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 483
EP  - 529
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00805-5/
DO  - 10.1090/S0894-0347-2014-00805-5
ID  - 10_1090_S0894_0347_2014_00805_5
ER  - 
%0 Journal Article
%A Hofmann, Steve
%A Kenig, Carlos
%A Mayboroda, Svitlana
%A Pipher, Jill
%T Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators
%J Journal of the American Mathematical Society
%D 2015
%P 483-529
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00805-5/
%R 10.1090/S0894-0347-2014-00805-5
%F 10_1090_S0894_0347_2014_00805_5
Hofmann, Steve; Kenig, Carlos; Mayboroda, Svitlana; Pipher, Jill. Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 483-529. doi: 10.1090/S0894-0347-2014-00805-5

[1] Auscher, Pascal On necessary and sufficient conditions for 𝐿^{𝑝}-estimates of Riesz transforms associated to elliptic operators on ℝⁿ and related estimates Mem. Amer. Math. Soc. 2007

[2] Auscher, Pascal, Axelsson, Andreas Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I Invent. Math. 2011 47 115

[3] Alfonseca, M. Angeles, Auscher, Pascal, Axelsson, Andreas, Hofmann, Steve, Kim, Seick Analyticity of layer potentials and 𝐿² solvability of boundary value problems for divergence form elliptic equations with complex 𝐿^{∞} coefficients Adv. Math. 2011 4533 4606

[4] Auscher, Pascal, Hofmann, Steve, Lacey, Michael, Mcintosh, Alan, Tchamitchian, Ph. The solution of the Kato square root problem for second order elliptic operators on ℝⁿ Ann. of Math. (2) 2002 633 654

[5] Auscher, Pascal, Hofmann, Steve, Lewis, John L., Tchamitchian, Philippe Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators Acta Math. 2001 161 190

[6] Auscher, Pascal, Tchamitchian, Philippe Square root problem for divergence operators and related topics Astérisque 1998

[7] Bensoussan, Alain, Lions, Jacques-Louis, Papanicolaou, George Asymptotic analysis for periodic structures 1978

[8] Caffarelli, L., Fabes, E., Mortola, S., Salsa, S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form Indiana Univ. Math. J. 1981 621 640

[9] Coifman, R. R., Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals Studia Math. 1974 241 250

[10] Coifman, R. R., Meyer, Y., Stein, E. M. Some new function spaces and their applications to harmonic analysis J. Funct. Anal. 1985 304 335

[11] Dahlberg, Bjã¶Rn E. J. Approximation of harmonic functions Ann. Inst. Fourier (Grenoble) 1980

[12] Dahlberg, Bjã¶Rn E. J., Jerison, David S., Kenig, Carlos E. Area integral estimates for elliptic differential operators with nonsmooth coefficients Ark. Mat. 1984 97 108

[13] Fefferman, C., Stein, E. M. 𝐻^{𝑝} spaces of several variables Acta Math. 1972 137 193

[14] Garnett, John B. Bounded analytic functions 1981

[15] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[16] Hofmann, Steve A local 𝑇𝑏 theorem for square functions 2008 175 185

[17] Hofmann S., Kenig C., Mayboroda S., Pipher J. The Regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients

[18] Hofmann, Steve, Lacey, Michael, Mcintosh, Alan The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds Ann. of Math. (2) 2002 623 631

[19] Hofmann S., Mayboroda S., Mourgoglou M. 𝐿^{𝑝} and endpoint solvability results for divergence form elliptic equations with complex 𝐿^{∞} coefficients

[20] Hofmann S., Mitrea M., Morris A. The method of layer potentials in 𝐿^{𝑝} and endpoint spaces for elliptic operators with 𝐿^{∞} Coefficients

[21] Jerison, David S., Kenig, Carlos E. The Dirichlet problem in nonsmooth domains Ann. of Math. (2) 1981 367 382

[22] Kato, Tosio Perturbation theory for linear operators 1966

[23] Kenig, Carlos E. Harmonic analysis techniques for second order elliptic boundary value problems 1994

[24] Kenig, C., Koch, H., Pipher, J., Toro, T. A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations Adv. Math. 2000 231 298

[25] Kenig, Carlos E., Lin, Fanghua, Shen, Zhongwei Homogenization of elliptic systems with Neumann boundary conditions J. Amer. Math. Soc. 2013 901 937

[26] Kenig, Carlos E., Pipher, Jill The Neumann problem for elliptic equations with nonsmooth coefficients Invent. Math. 1993 447 509

[27] Kenig, Carlos E., Shen, Zhongwei Homogenization of elliptic boundary value problems in Lipschitz domains Math. Ann. 2011 867 917

[28] Kenig, Carlos E., Shen, Zhongwei Layer potential methods for elliptic homogenization problems Comm. Pure Appl. Math. 2011 1 44

[29] Rosã©N, Andreas Layer potentials beyond singular integral operators Publ. Mat. 2013 429 454

[30] Serrin, James, Weinberger, H. F. Isolated singularities of solutions of linear elliptic equations Amer. J. Math. 1966 258 272

[31] Varopoulos N. A remark on BMO and bounded harmonic functions 1970

Cité par Sources :