On Jordan-Hölder series of some locally analytic representations
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 99-157

Voir la notice de l'article provenant de la source American Mathematical Society

Let $G$ be a split reductive $p$-adic group. This paper is about the Jordan-Hölder series of locally analytic $G$-representations which are induced from locally algebraic representations of a parabolic subgroup $P \subset G$. We construct for every representation $M$ of $\textrm {Lie}(G)$ in the BGG-category ${\mathcal O}$, which is equipped with an algebraic $P$-action, and for every smooth $P$-representation $V$, a locally analytic representation ${\mathcal F}^G_P(M,V)$ of $G$. This gives rise to a bi-functor to the category of locally analytic representations. We prove that it is exact and give a criterion for the topological irreducibility of ${\mathcal F}^G_P(M,V)$ in terms of $M$ and $V$.
DOI : 10.1090/S0894-0347-2014-00803-1

Orlik, Sascha 1 ; Strauch, Matthias 2

1 Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
2 Indiana University, Department of Mathematics, Rawles Hall, Bloomington, Indiana 47405
@article{10_1090_S0894_0347_2014_00803_1,
     author = {Orlik, Sascha and Strauch, Matthias},
     title = {On {Jordan-H\~A{\textparagraph}lder} series of some locally analytic representations},
     journal = {Journal of the American Mathematical Society},
     pages = {99--157},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00803-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00803-1/}
}
TY  - JOUR
AU  - Orlik, Sascha
AU  - Strauch, Matthias
TI  - On Jordan-Hölder series of some locally analytic representations
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 99
EP  - 157
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00803-1/
DO  - 10.1090/S0894-0347-2014-00803-1
ID  - 10_1090_S0894_0347_2014_00803_1
ER  - 
%0 Journal Article
%A Orlik, Sascha
%A Strauch, Matthias
%T On Jordan-Hölder series of some locally analytic representations
%J Journal of the American Mathematical Society
%D 2015
%P 99-157
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00803-1/
%R 10.1090/S0894-0347-2014-00803-1
%F 10_1090_S0894_0347_2014_00803_1
Orlik, Sascha; Strauch, Matthias. On Jordan-Hölder series of some locally analytic representations. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 99-157. doi: 10.1090/S0894-0347-2014-00803-1

[1] Andersen, H. H., Lauritzen, N. Twisted Verma modules 2003 1 26

[2] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. A certain category of 𝔤-modules Funkcional. Anal. i Priložen. 1976 1 8

[3] Borel, A., Wallach, N. Continuous cohomology, discrete subgroups, and representations of reductive groups 2000

[4] Bott, Raoul Homogeneous vector bundles Ann. of Math. (2) 1957 203 248

[5] Carter, Roger W. Finite groups of Lie type 1993

[6] Casselman, W. On a 𝑝-adic vanishing theorem of Garland Bull. Amer. Math. Soc. 1974 1001 1004

[7] Dimitrov, Ivan, Mathieu, Olivier, Penkov, Ivan On the structure of weight modules Trans. Amer. Math. Soc. 2000 2857 2869

[8] Dixon, J. D., Du Sautoy, M. P. F., Mann, A., Segal, D. Analytic pro-𝑝 groups 1999

[9] Emerton M. Jacquet modules of locally analytic representations of 𝑝-adic reductive groups II. The relation to parabolic induction

[10] Emerton M. Locally analytic vectors in representations of locally 𝑝-adic analytic groups

[11] Fã©Aux De Lacroix, Christian Tobias Einige Resultate über die topologischen Darstellungen 𝑝-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem 𝑝-adischen Körper 1999

[12] Hartshorne, Robin Algebraic geometry 1977

[13] Humphreys, James E. Introduction to Lie algebras and representation theory 1978

[14] Humphreys, James E. Representations of semisimple Lie algebras in the BGG category 𝒪 2008

[15] Jantzen, Jens Carsten Representations of algebraic groups 2003

[16] Jones, Owen T. R. An analogue of the BGG resolution for locally analytic principal series J. Number Theory 2011 1616 1640

[17] Knapp, Anthony W. Lie groups, Lie algebras, and cohomology 1988

[18] Kohlhaase, Jan Invariant distributions on 𝑝-adic analytic groups Duke Math. J. 2007 19 62

[19] Kohlhaase, Jan The cohomology of locally analytic representations J. Reine Angew. Math. 2011 187 240

[20] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory 2002

[21] Lepowsky, J. Generalized Verma modules, the Cartan-Helgason theorem, and the Harish-Chandra homomorphism J. Algebra 1977 470 495

[22] Morita, Yasuo A 𝑝-adic theory of hyperfunctions. I Publ. Res. Inst. Math. Sci. 1981 1 24

[23] Morita, Yasuo Analytic representations of 𝑆𝐿₂ over a 𝔭-adic number field. II 1984 282 297

[24] Orlik, Sascha Equivariant vector bundles on Drinfeld’s upper half space Invent. Math. 2008 585 656

[25] Orlik, Sascha, Strauch, Matthias On the irreducibility of locally analytic principal series representations Represent. Theory 2010 713 746

[26] Pohlkamp K. Randwerte holomorpher Funktionen auf 𝑝-adischen symmetrischen Räumen 2004

[27] Schmidt, Tobias Auslander regularity of 𝑝-adic distribution algebras Represent. Theory 2008 37 57

[28] Schneider, P., Stuhler, U. The cohomology of 𝑝-adic symmetric spaces Invent. Math. 1991 47 122

[29] Schneider, P., Teitelbaum, J., Prasad, Dipendra 𝑈(𝔤)-finite locally analytic representations Represent. Theory 2001 111 128

[30] Schneider, Peter Nonarchimedean functional analysis 2002

[31] Schneider, Peter Continuous representation theory of 𝑝-adic Lie groups 2006 1261 1282

[32] Schneider, Peter, Teitelbaum, Jeremy Locally analytic distributions and 𝑝-adic representation theory, with applications to 𝐺𝐿₂ J. Amer. Math. Soc. 2002 443 468

[33] Schneider, Peter, Teitelbaum, Jeremy 𝑝-adic boundary values Astérisque 2002 51 125

[34] Schneider, Peter, Teitelbaum, Jeremy Algebras of 𝑝-adic distributions and admissible representations Invent. Math. 2003 145 196

[35] Schneider, Peter, Teitelbaum, Jeremy Duality for admissible locally analytic representations Represent. Theory 2005 297 326

[36] Schraen, Benjamin Représentations localement analytiques de 𝐺𝐿₃(ℚ_{𝕡}) Ann. Sci. Éc. Norm. Supér. (4) 2011 43 145

[37] Teitelbaum J. Admissible analytic representations. An introduction to three questions 2006

Cité par Sources :