Random groups contain surface subgroups
Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 383-419

Voir la notice de l'article provenant de la source American Mathematical Society

A random group contains many quasiconvex surface subgroups.
DOI : 10.1090/S0894-0347-2014-00802-X

Calegari, Danny 1 ; Walker, Alden 1

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
@article{10_1090_S0894_0347_2014_00802_X,
     author = {Calegari, Danny and Walker, Alden},
     title = {Random groups contain surface subgroups},
     journal = {Journal of the American Mathematical Society},
     pages = {383--419},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00802-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00802-X/}
}
TY  - JOUR
AU  - Calegari, Danny
AU  - Walker, Alden
TI  - Random groups contain surface subgroups
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 383
EP  - 419
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00802-X/
DO  - 10.1090/S0894-0347-2014-00802-X
ID  - 10_1090_S0894_0347_2014_00802_X
ER  - 
%0 Journal Article
%A Calegari, Danny
%A Walker, Alden
%T Random groups contain surface subgroups
%J Journal of the American Mathematical Society
%D 2015
%P 383-419
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00802-X/
%R 10.1090/S0894-0347-2014-00802-X
%F 10_1090_S0894_0347_2014_00802_X
Calegari, Danny; Walker, Alden. Random groups contain surface subgroups. Journal of the American Mathematical Society, Tome 28 (2015) no. 2, pp. 383-419. doi: 10.1090/S0894-0347-2014-00802-X

[1] Agol I. The virtual Haken conjecture

[2] Bridson, Martin R., Haefliger, Andrã© Metric spaces of non-positive curvature 1999

[3] Calegari, Danny, Walker, Alden Random rigidity in the free group Geom. Topol. 2013 1707 1744

[4] Calegari D., Walker A.

[5] Calegari D., Walker A. Surface subgroups from linear programming

[6] Calegari D., Wilton H. Random graphs of free groups contain surface subgroups

[7] Dahmani, Franã§Ois, Guirardel, Vincent, Przytycki, Piotr Random groups do not split Math. Ann. 2011 657 673

[8] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[9] Gromov M. personal communication

[10] Kahn, Jeremy, Markovic, Vladimir Immersing almost geodesic surfaces in a closed hyperbolic three manifold Ann. of Math. (2) 2012 1127 1190

[11] Kotowski, Marcin, Kotowski, Michaå‚ Random groups and property (𝑇): Å»uk’s theorem revisited J. Lond. Math. Soc. (2) 2013 396 416

[12] Liu Y., Markovic V. Homology of curves and surfaces in closed hyperbolic 3-manifolds

[13] Ollivier, Yann Some small cancellation properties of random groups Internat. J. Algebra Comput. 2007 37 51

[14] Ollivier, Yann A January 2005 invitation to random groups 2005

[15] Ollivier, Yann, Wise, Daniel T. Cubulating random groups at density less than 1/6 Trans. Amer. Math. Soc. 2011 4701 4733

[16] Stallings, John R. Topology of finite graphs Invent. Math. 1983 551 565

[17] ŻUk, A. Property (T) and Kazhdan constants for discrete groups Geom. Funct. Anal. 2003 643 670

Cité par Sources :