Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \boldmath2𝜋 and completion of the main proof
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 235-278

Voir la notice de l'article provenant de la source American Mathematical Society

This is the third and final article in a series which prove the fact that a K-stable Fano manifold admits a Kähler-Einstein metric. In this paper we consider the Gromov-Hausdorff limits of metrics with cone singularities in the case when the limiting cone angle approaches 2$\pi$. We also put all our technical results together to complete the proof of the main theorem.
DOI : 10.1090/S0894-0347-2014-00801-8

Chen, Xiuxiong 1 ; Donaldson, Simon 2 ; Sun, Song 2

1 Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651 – and – School of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
2 Department of Mathematics, Imperial College London, London, U.K.
@article{10_1090_S0894_0347_2014_00801_8,
     author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
     title = {K\~A{\textcurrency}hler-Einstein metrics on {Fano} manifolds. {III:} {Limits} as cone angle approaches \boldmath2{\dh}œ‹ and completion of the main proof},
     journal = {Journal of the American Mathematical Society},
     pages = {235--278},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00801-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00801-8/}
}
TY  - JOUR
AU  - Chen, Xiuxiong
AU  - Donaldson, Simon
AU  - Sun, Song
TI  - Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \boldmath2𝜋 and completion of the main proof
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 235
EP  - 278
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00801-8/
DO  - 10.1090/S0894-0347-2014-00801-8
ID  - 10_1090_S0894_0347_2014_00801_8
ER  - 
%0 Journal Article
%A Chen, Xiuxiong
%A Donaldson, Simon
%A Sun, Song
%T Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \boldmath2𝜋 and completion of the main proof
%J Journal of the American Mathematical Society
%D 2015
%P 235-278
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00801-8/
%R 10.1090/S0894-0347-2014-00801-8
%F 10_1090_S0894_0347_2014_00801_8
Chen, Xiuxiong; Donaldson, Simon; Sun, Song. Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \boldmath2𝜋 and completion of the main proof. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 235-278. doi: 10.1090/S0894-0347-2014-00801-8

[1] Anderson, Michael T. Convergence and rigidity of manifolds under Ricci curvature bounds Invent. Math. 1990 429 445

[2] Aubin, Thierry Équations du type Monge-Ampère sur les variétés kähleriennes compactes C. R. Acad. Sci. Paris Sér. A-B 1976

[3] Bedford, Eric, Taylor, B. A. A new capacity for plurisubharmonic functions Acta Math. 1982 1 40

[4] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. II J. Differential Geom. 2000 13 35

[5] Calabi, Eugenio On Kähler manifolds with vanishing canonical class 1957 78 89

[6] Calabi, Eugenio Extremal Kähler metrics. II 1985 95 114

[7] Chen, Xiuxiong The space of Kähler metrics J. Differential Geom. 2000 189 234

[8] Chen, Xiuxiong, Wang, Bing Space of Ricci flows I Comm. Pure Appl. Math. 2012 1399 1457

[9] Demailly, Jean-Pierre, Kollã¡R, Jã¡Nos Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Ann. Sci. École Norm. Sup. (4) 2001 525 556

[10] Ding, Wei Yue Remarks on the existence problem of positive Kähler-Einstein metrics Math. Ann. 1988 463 471

[11] Ding, Wei Yue, Tian, Gang Kähler-Einstein metrics and the generalized Futaki invariant Invent. Math. 1992 315 335

[12] Donaldson, S. K. Scalar curvature and stability of toric varieties J. Differential Geom. 2002 289 349

[13] Donaldson, S. K. Stability, birational transformations and the Kahler-Einstein problem 2012 203 228

[14] Donaldson, S. K. Kähler metrics with cone singularities along a divisor 2012 49 79

[15] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639

[16] Futaki, A. An obstruction to the existence of Einstein Kähler metrics Invent. Math. 1983 437 443

[17] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 2001

[18] Hamilton, Richard S. The formation of singularities in the Ricci flow 1995 7 136

[19] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1990

[20] Lazarsfeld, Robert Positivity in algebraic geometry. II 2004

[21] Li, Peter Lecture notes on geometric analysis 1993

[22] Lu, Peng A local curvature bound in Ricci flow Geom. Topol. 2010 1095 1110

[23] Matsushima, Yoz㴠Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne Nagoya Math. J. 1957 145 150

[24] Siu, Yum Tong Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics 1987 171

[25] Stoppa, Jacopo K-stability of constant scalar curvature Kähler manifolds Adv. Math. 2009 1397 1408

[26] Sun, Song Note on K-stability of pairs Math. Ann. 2013 259 272

[27] Tian, G. On Calabi’s conjecture for complex surfaces with positive first Chern class Invent. Math. 1990 101 172

[28] Tian, Gang Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37

[29] Trudinger, Neil S. Regularity of solutions of fully nonlinear elliptic equations Boll. Un. Mat. Ital. A (6) 1984 421 430

[30] Uhlenbeck, Karen K. Connections with 𝐿^{𝑝} bounds on curvature Comm. Math. Phys. 1982 31 42

[31] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[32] Yau, Shing-Tung Open problems in geometry 1993 1 28

Cité par Sources :