Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \boldmath2𝜋
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 199-234

Voir la notice de l'article provenant de la source American Mathematical Society

This is the second of a series of three papers which prove the fact that a K-stable Fano manifold admits a Kähler-Einstein metric. In this paper we consider the Gromov-Hausdorff limits of metrics with cone singularities in the case when the limiting cone angle is less than 2${\pi }$. We show that these are in a natrual way projective algebraic varieties. In the case when the limiting variety and the limiting divisor are smooth we show that the limiting metric also has standard cone singularities.
DOI : 10.1090/S0894-0347-2014-00800-6

Chen, Xiuxiong 1 ; Donaldson, Simon 2 ; Sun, Song 2

1 Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651 – and – School of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
2 Department of Mathematics, Imperial College London, London, U.K.
@article{10_1090_S0894_0347_2014_00800_6,
     author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
     title = {K\~A{\textcurrency}hler-Einstein metrics on {Fano} manifolds. {II:} {Limits} with cone angle less than \boldmath2{\dh}œ‹},
     journal = {Journal of the American Mathematical Society},
     pages = {199--234},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00800-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00800-6/}
}
TY  - JOUR
AU  - Chen, Xiuxiong
AU  - Donaldson, Simon
AU  - Sun, Song
TI  - Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \boldmath2𝜋
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 199
EP  - 234
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00800-6/
DO  - 10.1090/S0894-0347-2014-00800-6
ID  - 10_1090_S0894_0347_2014_00800_6
ER  - 
%0 Journal Article
%A Chen, Xiuxiong
%A Donaldson, Simon
%A Sun, Song
%T Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \boldmath2𝜋
%J Journal of the American Mathematical Society
%D 2015
%P 199-234
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00800-6/
%R 10.1090/S0894-0347-2014-00800-6
%F 10_1090_S0894_0347_2014_00800_6
Chen, Xiuxiong; Donaldson, Simon; Sun, Song. Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \boldmath2𝜋. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 199-234. doi: 10.1090/S0894-0347-2014-00800-6

[1] Anderson, Michael T. Convergence and rigidity of manifolds under Ricci curvature bounds Invent. Math. 1990 429 445

[2] Cheeger, J. Integral bounds on curvature elliptic estimates and rectifiability of singular sets Geom. Funct. Anal. 2003 20 72

[3] Cheeger, Jeff, Colding, Tobias H. Lower bounds on Ricci curvature and the almost rigidity of warped products Ann. of Math. (2) 1996 189 237

[4] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. I J. Differential Geom. 1997 406 480

[5] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. III J. Differential Geom. 2000 37 74

[6] Donaldson, S. K. Kähler metrics with cone singularities along a divisor 2012 49 79

[7] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639

Cité par Sources :