Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 183-197

Voir la notice de l'article provenant de la source American Mathematical Society

This is the first of a series of three papers which prove the fact that a K-stable Fano manifold admits a Kähler-Einstein metric. The main result of this paper is that a Kähler-Einstein metric with cone singularities along a divisor can be approximated by a sequence of smooth Kähler metrics with controlled geometry in the Gromov-Hausdorff sense.
DOI : 10.1090/S0894-0347-2014-00799-2

Chen, Xiuxiong 1 ; Donaldson, Simon 2 ; Sun, Song 2

1 Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651 – and – School of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
2 Department of Mathematics, Imperial College London, London, U.K.
@article{10_1090_S0894_0347_2014_00799_2,
     author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
     title = {K\~A{\textcurrency}hler-Einstein metrics on {Fano} manifolds. {I:} {Approximation} of metrics with cone singularities},
     journal = {Journal of the American Mathematical Society},
     pages = {183--197},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00799-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00799-2/}
}
TY  - JOUR
AU  - Chen, Xiuxiong
AU  - Donaldson, Simon
AU  - Sun, Song
TI  - Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 183
EP  - 197
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00799-2/
DO  - 10.1090/S0894-0347-2014-00799-2
ID  - 10_1090_S0894_0347_2014_00799_2
ER  - 
%0 Journal Article
%A Chen, Xiuxiong
%A Donaldson, Simon
%A Sun, Song
%T Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
%J Journal of the American Mathematical Society
%D 2015
%P 183-197
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00799-2/
%R 10.1090/S0894-0347-2014-00799-2
%F 10_1090_S0894_0347_2014_00799_2
Chen, Xiuxiong; Donaldson, Simon; Sun, Song. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 183-197. doi: 10.1090/S0894-0347-2014-00799-2

[1] Bedford, Eric, Taylor, B. A. Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth Indiana Univ. Math. J. 1989 455 469

[2] Berman, Robert J. A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics Adv. Math. 2013 1254 1297

[3] Bå‚Ocki, Zbigniew Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 1697 1701

[4] Calabi, Eugenio Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens Michigan Math. J. 1958 105 126

[5] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. II J. Differential Geom. 2000 13 35

[6] Chen, Xiuxiong On the lower bound of the Mabuchi energy and its application Internat. Math. Res. Notices 2000 607 623

[7] Cheng, Shiu Yuen, Yau, Shing Tung On the regularity of the Monge-Ampère equation 𝑑𝑒𝑡(∂²𝑢/∂𝑥ᵢ∂𝑠𝑥ⱼ) Comm. Pure Appl. Math. 1977 41 68

[8] Donaldson, S. K. Kähler metrics with cone singularities along a divisor 2012 49 79

[9] Evans, Lawrence C. Classical solutions of fully nonlinear, convex, second-order elliptic equations Comm. Pure Appl. Math. 1982 333 363

[10] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639

[11] Koå‚Odziej, Så‚Awomir The complex Monge-Ampère equation Acta Math. 1998 69 117

[12] Koå‚Odziej, Så‚Awomir The Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 667 686

[13] Krylov, N. V. Boundedly inhomogeneous elliptic and parabolic equations Izv. Akad. Nauk SSSR Ser. Mat. 1982

[14] Li, Haozhao On the lower bound of the 𝐾-energy and 𝐹-functional Osaka J. Math. 2008 253 264

[15] Lu, Yung-Chen Holomorphic mappings of complex manifolds J. Differential Geometry 1968 299 312

[16] Szã©Kelyhidi, Gã¡Bor Greatest lower bounds on the Ricci curvature of Fano manifolds Compos. Math. 2011 319 331

[17] Tian, G., Yau, Shing-Tung Complete Kähler manifolds with zero Ricci curvature. I J. Amer. Math. Soc. 1990 579 609

[18] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

Cité par Sources :