Voir la notice de l'article provenant de la source American Mathematical Society
Chen, Xiuxiong 1 ; Donaldson, Simon 2 ; Sun, Song 2
@article{10_1090_S0894_0347_2014_00799_2,
author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
title = {K\~A{\textcurrency}hler-Einstein metrics on {Fano} manifolds. {I:} {Approximation} of metrics with cone singularities},
journal = {Journal of the American Mathematical Society},
pages = {183--197},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2015},
doi = {10.1090/S0894-0347-2014-00799-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00799-2/}
}
TY - JOUR AU - Chen, Xiuxiong AU - Donaldson, Simon AU - Sun, Song TI - Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities JO - Journal of the American Mathematical Society PY - 2015 SP - 183 EP - 197 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00799-2/ DO - 10.1090/S0894-0347-2014-00799-2 ID - 10_1090_S0894_0347_2014_00799_2 ER -
%0 Journal Article %A Chen, Xiuxiong %A Donaldson, Simon %A Sun, Song %T Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities %J Journal of the American Mathematical Society %D 2015 %P 183-197 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00799-2/ %R 10.1090/S0894-0347-2014-00799-2 %F 10_1090_S0894_0347_2014_00799_2
Chen, Xiuxiong; Donaldson, Simon; Sun, Song. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 183-197. doi: 10.1090/S0894-0347-2014-00799-2
[1] , Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth Indiana Univ. Math. J. 1989 455 469
[2] A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics Adv. Math. 2013 1254 1297
[3] Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 1697 1701
[4] Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens Michigan Math. J. 1958 105 126
[5] , On the structure of spaces with Ricci curvature bounded below. II J. Differential Geom. 2000 13 35
[6] On the lower bound of the Mabuchi energy and its application Internat. Math. Res. Notices 2000 607 623
[7] , On the regularity of the Monge-Ampère equation ððð¡(â²ð¢/âð¥áµ¢âð ð¥â±¼) Comm. Pure Appl. Math. 1977 41 68
[8] Kähler metrics with cone singularities along a divisor 2012 49 79
[9] Classical solutions of fully nonlinear, convex, second-order elliptic equations Comm. Pure Appl. Math. 1982 333 363
[10] , , Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639
[11] The complex Monge-Ampère equation Acta Math. 1998 69 117
[12] The Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 667 686
[13] Boundedly inhomogeneous elliptic and parabolic equations Izv. Akad. Nauk SSSR Ser. Mat. 1982
[14] On the lower bound of the ð¾-energy and ð¹-functional Osaka J. Math. 2008 253 264
[15] Holomorphic mappings of complex manifolds J. Differential Geometry 1968 299 312
[16] Greatest lower bounds on the Ricci curvature of Fano manifolds Compos. Math. 2011 319 331
[17] , Complete Kähler manifolds with zero Ricci curvature. I J. Amer. Math. Soc. 1990 579 609
[18] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411
Cité par Sources :