Brody curves and mean dimension
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 159-182

Voir la notice de l'article provenant de la source American Mathematical Society

We study the mean dimensions of the systems of Brody curves. In particular we give the formula of the mean dimension of the system of Brody curves in the Riemann sphere. A key notion is a non-degeneracy of Brody curves introduced by Yosida (1934). We develop a deformation theory of non-degenerate Brody curves and apply it to the calculation of the mean dimension. Moreover we show that there are sufficiently many non-degenerate Brody curves by using the method of gluing infinitely many rational curves.
DOI : 10.1090/S0894-0347-2014-00798-0

Matsuo, Shinichiroh 1 ; Tsukamoto, Masaki 2

1 Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan
2 Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
@article{10_1090_S0894_0347_2014_00798_0,
     author = {Matsuo, Shinichiroh and Tsukamoto, Masaki},
     title = {Brody curves and mean dimension},
     journal = {Journal of the American Mathematical Society},
     pages = {159--182},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00798-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00798-0/}
}
TY  - JOUR
AU  - Matsuo, Shinichiroh
AU  - Tsukamoto, Masaki
TI  - Brody curves and mean dimension
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 159
EP  - 182
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00798-0/
DO  - 10.1090/S0894-0347-2014-00798-0
ID  - 10_1090_S0894_0347_2014_00798_0
ER  - 
%0 Journal Article
%A Matsuo, Shinichiroh
%A Tsukamoto, Masaki
%T Brody curves and mean dimension
%J Journal of the American Mathematical Society
%D 2015
%P 159-182
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00798-0/
%R 10.1090/S0894-0347-2014-00798-0
%F 10_1090_S0894_0347_2014_00798_0
Matsuo, Shinichiroh; Tsukamoto, Masaki. Brody curves and mean dimension. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 159-182. doi: 10.1090/S0894-0347-2014-00798-0

[1] Angenent, Sigurd The shadowing lemma for elliptic PDE 1987 7 22

[2] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms 2008

[3] Brody, Robert Compact manifolds and hyperbolicity Trans. Amer. Math. Soc. 1978 213 219

[4] Eremenko, Alexandre Normal holomorphic curves from parabolic regions to projective spaces

[5] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 2001

[6] Antoine Gournay Dimension moyenne et espaces d’applications pseudo-holomorphes 2008

[7] Gournay, Antoine On a Hölder covariant version of mean dimension C. R. Math. Acad. Sci. Paris 2009 1389 1392

[8] Gournay, Antoine A dynamical approach to von Neumann dimension Discrete Contin. Dyn. Syst. 2010 967 987

[9] A. Gournay Complex surfaces and interpolation on pseudo-holomorphic cylinder

[10] Gournay, Antoine Widths of ℓ^{𝑝} balls Houston J. Math. 2011 1227 1248

[11] Gromov, Misha Topological invariants of dynamical systems and spaces of holomorphic maps. I Math. Phys. Anal. Geom. 1999 323 415

[12] Lindenstrauss, Elon Mean dimension, small entropy factors and an embedding theorem Inst. Hautes Études Sci. Publ. Math. 1999

[13] Lindenstrauss, Elon, Weiss, Benjamin Mean topological dimension Israel J. Math. 2000 1 24

[14] Macrã¬, Marta, Nolasco, Margherita, Ricciardi, Tonia Asymptotics for selfdual vortices on the torus and on the plane: a gluing technique SIAM J. Math. Anal. 2005 1 16

[15] Matsuo, Shinichiroh, Tsukamoto, Masaki Instanton approximation, periodic ASD connections, and mean dimension J. Funct. Anal. 2011 1369 1427

[16] Mcduff, Dusa, Salamon, Dietmar 𝐽-holomorphic curves and symplectic topology 2004

[17] Tsukamoto, Masaki Gluing an infinite number of instantons Nagoya Math. J. 2007 107 131

[18] Tsukamoto, Masaki Moduli space of Brody curves, energy and mean dimension Nagoya Math. J. 2008 27 58

[19] Tsukamoto, Masaki A packing problem for holomorphic curves Nagoya Math. J. 2009 33 68

[20] Tsukamoto, Masaki Gauge theory on infinite connected sum and mean dimension Math. Phys. Anal. Geom. 2009 325 380

[21] Tsukamoto, Masaki Deformation of Brody curves and mean dimension Ergodic Theory Dynam. Systems 2009 1641 1657

[22] Tsukamoto, Masaki Remark on energy density of Brody curves Proc. Japan Acad. Ser. A Math. Sci. 2012 127 131

[23] K. Yosida On a class of meromorphic functions Proc. Phys.-Math. Soc. Japan 1934 227 235

Cité par Sources :