Voir la notice de l'article provenant de la source American Mathematical Society
Braverman, Alexander 1 ; Finkelberg, Michael 2
@article{10_1090_S0894_0347_2014_00797_9,
     author = {Braverman, Alexander and Finkelberg, Michael},
     title = {Semi-infinite {Schubert} varieties and quantum {\dh}{\textthreequarters}-theory of flag manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1147--1168},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00797-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00797-9/}
}
                      
                      
                    TY - JOUR AU - Braverman, Alexander AU - Finkelberg, Michael TI - Semi-infinite Schubert varieties and quantum ð¾-theory of flag manifolds JO - Journal of the American Mathematical Society PY - 2014 SP - 1147 EP - 1168 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00797-9/ DO - 10.1090/S0894-0347-2014-00797-9 ID - 10_1090_S0894_0347_2014_00797_9 ER -
%0 Journal Article %A Braverman, Alexander %A Finkelberg, Michael %T Semi-infinite Schubert varieties and quantum ð¾-theory of flag manifolds %J Journal of the American Mathematical Society %D 2014 %P 1147-1168 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00797-9/ %R 10.1090/S0894-0347-2014-00797-9 %F 10_1090_S0894_0347_2014_00797_9
Braverman, Alexander; Finkelberg, Michael. Semi-infinite Schubert varieties and quantum ð¾-theory of flag manifolds. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1147-1168. doi: 10.1090/S0894-0347-2014-00797-9
[1] , Quantization of Hitchinâs Hamiltonians and Hecke eigenâsheaves
[2] Parabolic bundles as orbifold bundles Duke Math. J. 1997 305 325
[3] Spaces of quasi-maps into the flag varieties and their applications 2006 1145 1170
[4] Instanton counting via affine Lie algebras. I. Equivariant ð½-functions of (affine) flag manifolds and Whittaker vectors 2004 113 132
[5] , Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential 2006 61 78
[6] , , Uhlenbeck spaces via affine Lie algebras 2006 17 135
[7] , Finite difference quantum Toda lattice via equivariant ð¾-theory Transform. Groups 2005 363 386
[8] , Pursuing the double affine Grassmannian II: Convolution Adv. Math. 2012 414 432
[9] , Some examples of Hecke algebras for two-dimensional local fields Nagoya Math. J. 2006 57 84
[10] Rationalité des singularités canoniques Invent. Math. 1981 1 6
[11] Whittaker functions on quantum groups and ð-deformed Toda operators 1999 9 25
[12] Algebraic loop groups and moduli spaces of bundles J. Eur. Math. Soc. (JEMS) 2003 41 68
[13] , , , Semi-infinite flags. II. Local and global intersection cohomology of quasimapsâ spaces 1999 113 148
[14] , , , , Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian Lett. Math. Phys. 2009 39 77
[15] , , , Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces Selecta Math. (N.S.) 2011 337 361
[16] , , , A note on a symplectic structure on the space of ðº-monopoles Comm. Math. Phys. 1999 411 421
[17] , Semi-infinite flags. I. Case of global curve ð¹ 1999 81 112
[18] , Quantization of Drinfeld Zastava in type ð´
[19] , Quantum ð¾-theory on flag manifolds, finite-difference Toda lattices and quantum groups Invent. Math. 2003 193 219
[20] Sur la classification des fibrés holomorphes sur la sphère de Riemann Amer. J. Math. 1957 121 138
[21] , Kazhdan-Lusztig conjecture for affine Lie algebras with negative level Duke Math. J. 1995 21 62
[22] Quantum cohomology of flag manifolds ðº/ðµ and quantum Toda lattices Ann. of Math. (2) 1999 129 148
[23] Enumeration of rational curves via torus actions 1995 335 368
[24] , A reconstruction theorem in quantum cohomology and quantum ð¾-theory Amer. J. Math. 2004 1367 1379
[25] , Geometric Langlands duality and representations of algebraic groups over commutative rings Ann. of Math. (2) 2007 95 143
[26] Commutative ring theory 1986
[27] Seiberg-Witten prepotential from instanton counting Adv. Theor. Math. Phys. 2003 831 864
[28] Deformations of principal bundles on the projective line Invent. Math. 1983 165 191
[29] Moduli for principal bundles over algebraic curves. I Proc. Indian Acad. Sci. Math. Sci. 1996 301 328
[30] Regular nilpotent elements and quantum groups Comm. Math. Phys. 1999 1 16
[31] The geometrical Satake correspondence for ramified groups
Cité par Sources :
