Semi-infinite Schubert varieties and quantum 𝐾-theory of flag manifolds
Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1147-1168

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\mathfrak {g}$ be a semi-simple Lie algebra over $\mathbb {C}$ and let $\mathcal {B}_{\mathfrak {g}}$ be its flag variety. In this paper we study the spaces $Z^{\alpha }_{\mathfrak {g}}$ of based quasi-maps $\mathbb {P}^1\to \mathcal {B}_{\mathfrak {g}}$ (introduced by Finkelberg and Mirković in 1999) as well as their affine versions (corresponding to $\mathfrak {g}$ being untwisted affine algebra) introduced by Braverman et al. in 2006. The purpose of this paper is two-fold. First we study the singularities of the above spaces (as was explained by Finkelberg and Mirković in 1999 and Braverman in 2006 they are supposed to model singularities of the not rigorously defined “semi-infinite Schubert varieties”). We show that $Z^{\alpha }_{\mathfrak {g}}$ is normal and when $\mathfrak {g}$ is simply laced, $Z^{\alpha }_{\mathfrak {g}}$ is Gorenstein and has rational singularities; some weaker results are proved also in the affine case. The second purpose is to study the character of the ring of functions on $Z^{\alpha }_{\mathfrak {g}}$. When $\mathfrak {g}$ is finite-dimensional and simply laced we show that the generating function of these characters satisfies the “fermionic formula” version of quantum difference Toda equation, thus extending the results for $\mathfrak {g}=\mathfrak {sl}(N)$ from Givental and Lee in 2003 and Braverman and Finkelberg in 2005; in view of the first part this also proves a conjecture from Givental and Lee in 2003 describing the quantum $K$-theory of $\mathcal {B}_{\mathfrak {g}}$ in terms of the Langlands dual quantum group $U_q(\mathfrak {\check {g}})$ (for non-simply laced $\mathfrak {g}$ certain modification of that conjecture is necessary). Similar analysis (modulo certain assumptions) is performed for affine $\mathfrak {g}$, extending the results of Braverman and Finkelberg.
DOI : 10.1090/S0894-0347-2014-00797-9

Braverman, Alexander 1 ; Finkelberg, Michael 2

1 Department of Mathematics, Brown University, 151 Thayer Street, Providence, Rhode Island 02912
2 IMU, IITP, and National Research University Higher School of Economics Department of Mathematics, 20 Myasnitskaya st, Moscow 101000, Russia
@article{10_1090_S0894_0347_2014_00797_9,
     author = {Braverman, Alexander and Finkelberg, Michael},
     title = {Semi-infinite {Schubert} varieties and quantum {\dh}{\textthreequarters}-theory of flag manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1147--1168},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00797-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00797-9/}
}
TY  - JOUR
AU  - Braverman, Alexander
AU  - Finkelberg, Michael
TI  - Semi-infinite Schubert varieties and quantum 𝐾-theory of flag manifolds
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 1147
EP  - 1168
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00797-9/
DO  - 10.1090/S0894-0347-2014-00797-9
ID  - 10_1090_S0894_0347_2014_00797_9
ER  - 
%0 Journal Article
%A Braverman, Alexander
%A Finkelberg, Michael
%T Semi-infinite Schubert varieties and quantum 𝐾-theory of flag manifolds
%J Journal of the American Mathematical Society
%D 2014
%P 1147-1168
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00797-9/
%R 10.1090/S0894-0347-2014-00797-9
%F 10_1090_S0894_0347_2014_00797_9
Braverman, Alexander; Finkelberg, Michael. Semi-infinite Schubert varieties and quantum 𝐾-theory of flag manifolds. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1147-1168. doi: 10.1090/S0894-0347-2014-00797-9

[1] Beilinson, A., Drinfeld, V. Quantization of Hitchin’s Hamiltonians and Hecke eigen–sheaves

[2] Biswas, Indranil Parabolic bundles as orbifold bundles Duke Math. J. 1997 305 325

[3] Braverman, Alexander Spaces of quasi-maps into the flag varieties and their applications 2006 1145 1170

[4] Braverman, Alexander Instanton counting via affine Lie algebras. I. Equivariant 𝐽-functions of (affine) flag manifolds and Whittaker vectors 2004 113 132

[5] Braverman, A., Etingof, P. Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential 2006 61 78

[6] Braverman, Alexander, Finkelberg, Michael, Gaitsgory, Dennis Uhlenbeck spaces via affine Lie algebras 2006 17 135

[7] Braverman, Alexander, Finkelberg, Michael Finite difference quantum Toda lattice via equivariant 𝐾-theory Transform. Groups 2005 363 386

[8] Braverman, Alexander, Finkelberg, Michael Pursuing the double affine Grassmannian II: Convolution Adv. Math. 2012 414 432

[9] Braverman, Alexander, Kazhdan, David Some examples of Hecke algebras for two-dimensional local fields Nagoya Math. J. 2006 57 84

[10] Elkik, Renã©E Rationalité des singularités canoniques Invent. Math. 1981 1 6

[11] Etingof, Pavel Whittaker functions on quantum groups and 𝑞-deformed Toda operators 1999 9 25

[12] Faltings, Gerd Algebraic loop groups and moduli spaces of bundles J. Eur. Math. Soc. (JEMS) 2003 41 68

[13] Feigin, Boris, Finkelberg, Michael, Kuznetsov, Alexander, Mirkoviä‡, Ivan Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces 1999 113 148

[14] Feigin, Boris, Feigin, Evgeny, Jimbo, Michio, Miwa, Tetsuji, Mukhin, Evgeny Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian Lett. Math. Phys. 2009 39 77

[15] Feigin, Boris, Finkelberg, Michael, Frenkel, Igor, Rybnikov, Leonid Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces Selecta Math. (N.S.) 2011 337 361

[16] Finkelberg, Michael, Kuznetsov, Alexander, Markarian, Nikita, Mirkoviä‡, Ivan A note on a symplectic structure on the space of 𝐺-monopoles Comm. Math. Phys. 1999 411 421

[17] Finkelberg, Michael, Mirkoviä‡, Ivan Semi-infinite flags. I. Case of global curve 𝐏¹ 1999 81 112

[18] Finkelberg, M., Rybnikov, L. Quantization of Drinfeld Zastava in type 𝐴

[19] Givental, Alexander, Lee, Yuan-Pin Quantum 𝐾-theory on flag manifolds, finite-difference Toda lattices and quantum groups Invent. Math. 2003 193 219

[20] Grothendieck, A. Sur la classification des fibrés holomorphes sur la sphère de Riemann Amer. J. Math. 1957 121 138

[21] Kashiwara, Masaki, Tanisaki, Toshiyuki Kazhdan-Lusztig conjecture for affine Lie algebras with negative level Duke Math. J. 1995 21 62

[22] Kim, Bumsig Quantum cohomology of flag manifolds 𝐺/𝐵 and quantum Toda lattices Ann. of Math. (2) 1999 129 148

[23] Kontsevich, Maxim Enumeration of rational curves via torus actions 1995 335 368

[24] Lee, Y.-P., Pandharipande, R. A reconstruction theorem in quantum cohomology and quantum 𝐾-theory Amer. J. Math. 2004 1367 1379

[25] Mirkoviä‡, I., Vilonen, K. Geometric Langlands duality and representations of algebraic groups over commutative rings Ann. of Math. (2) 2007 95 143

[26] Matsumura, Hideyuki Commutative ring theory 1986

[27] Nekrasov, Nikita A. Seiberg-Witten prepotential from instanton counting Adv. Theor. Math. Phys. 2003 831 864

[28] Ramanathan, A. Deformations of principal bundles on the projective line Invent. Math. 1983 165 191

[29] Ramanathan, A. Moduli for principal bundles over algebraic curves. I Proc. Indian Acad. Sci. Math. Sci. 1996 301 328

[30] Sevostyanov, Alexey Regular nilpotent elements and quantum groups Comm. Math. Phys. 1999 1 16

[31] Zhu, Z. The geometrical Satake correspondence for ramified groups

Cité par Sources :