Monotonicity of entropy for real multimodal maps
Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 1-61

Voir la notice de l'article provenant de la source American Mathematical Society

In 1992, Milnor posed the Monotonicity Conjecture that within a family of real multimodal polynomial interval maps with only real critical points, the isentropes, i.e., the sets of parameters for which the topological entropy is constant, are connected. This conjecture was already proved in the mid-1980s for quadratic maps by a number of different methods, see A. Douady (1993, 1995), A. Douady and J.H. Hubbard (1984, 1985), W. de Melo and S. van Strein (1993), J. Milnor and W. Thurston (1986, 1988), and M. Tsujii (2000). In 2000, Milnor and Tresser, provided a proof for the case of cubic maps. In this paper we will prove the general case of this 20 year old conjecture.
DOI : 10.1090/S0894-0347-2014-00795-5

Bruin, Henk 1 ; van Strien, Sebastian 2

1 Faculty of Mathematics, University of Vienna, Oskar Morgenstern Platz 1, A-1090 Vienna, Austria
2 Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
@article{10_1090_S0894_0347_2014_00795_5,
     author = {Bruin, Henk and van Strien, Sebastian},
     title = {Monotonicity of entropy for real multimodal maps},
     journal = {Journal of the American Mathematical Society},
     pages = {1--61},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00795-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00795-5/}
}
TY  - JOUR
AU  - Bruin, Henk
AU  - van Strien, Sebastian
TI  - Monotonicity of entropy for real multimodal maps
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 1
EP  - 61
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00795-5/
DO  - 10.1090/S0894-0347-2014-00795-5
ID  - 10_1090_S0894_0347_2014_00795_5
ER  - 
%0 Journal Article
%A Bruin, Henk
%A van Strien, Sebastian
%T Monotonicity of entropy for real multimodal maps
%J Journal of the American Mathematical Society
%D 2015
%P 1-61
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00795-5/
%R 10.1090/S0894-0347-2014-00795-5
%F 10_1090_S0894_0347_2014_00795_5
Bruin, Henk; van Strien, Sebastian. Monotonicity of entropy for real multimodal maps. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 1-61. doi: 10.1090/S0894-0347-2014-00795-5

[1] Block, Louis, Keesling, James Computing the topological entropy of maps of the interval with three monotone pieces J. Statist. Phys. 1992 755 774

[2] Block, Louis, Ledis, Dennis Topological conjugacy, transitivity, and patterns Topology and its Applications 2014 53 61

[3] Bruin, Henk Non-monotonicity of entropy of interval maps Phys. Lett. A 1995 359 362

[4] Bruin, Henk, Van Strien, S. On the structure of isentropes of polynomial maps Dynamical Systems: An International Journal 2013 381 392

[5] Boyland, Philip Semiconjugacies to angle-doubling Proc. Amer. Math. Soc. 2006 1299 1307

[6] Carleson, Lennart, Gamelin, Theodore W. Complex dynamics 1993

[7] Cheraghi, Davoud, Van Strien, Sebastian Towards Tresser’s conjecture

[8] Dawson, Silvina P., Galeeva, Roza, Milnor, John, Tresser, Charles A monotonicity conjecture for real cubic maps 1995 165 183

[9] Douady, Adrien Topological entropy of unimodal maps: monotonicity for quadratic polynomials 1995 65 87

[10] Douady, Adrien, Hubbard, John Hamal Etude dynamique des polynômes quadratiques complexes I & II Publ. Mat. d’Orsay 1984 1985

[11] Epstein, Adam Transversality in holomorphic dynamics

[12] Galeeva, Roza, Martens, Marco, Tresser, Charles Inducing, slopes, and conjugacy classes Israel J. Math. 1997 123 147

[13] Graczyk, Jacek, ŚWiatek, Grzegorz Generic hyperbolicity in the logistic family Ann. of Math. (2) 1997 1 52

[14] Haã¯Ssinsky, Peter Chirurgie parabolique C. R. Acad. Sci. Paris Sér. I Math. 1998 195 198

[15] Haã¯Ssinsky, Peter Déformation 𝐽-équivalente de polynômes géometriquement finis Fund. Math. 2000 131 141

[16] Heckman, Christopher Arthur Monotonicity and the construction of quasiconformal conjugacies in the real cubic family 1996 171

[17] Hofbauer, Franz On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II Israel J. Math. 1981 107 115

[18] Kan, Ittai, Koã§Ak, Hã¼Seyin, Yorke, James A. Antimonotonicity: concurrent creation and annihilation of periodic orbits Ann. of Math. (2) 1992 219 252

[19] Kolyada, S. F. One-parameter families of mappings of an interval with a negative Schwartzian derivative which violate the monotonicity of bifurcations Ukrain. Mat. Zh. 1989

[20] Kozlovski, O., Shen, W., Van Strien, S. Rigidity for real polynomials Ann. of Math. (2) 2007 749 841

[21] Kozlovski, O., Shen, W., Van Strien, S. Density of hyperbolicity in dimension one Ann. of Math. (2) 2007 145 182

[22] Levin, Genadi Multipliers of periodic orbits in spaces of rational maps Ergodic Theory Dynam. Systems 2011 197 243

[23] Lyubich, Mikhail Dynamics of quadratic polynomials. I, II Acta Math. 1997

[24] Mackay, R. S., Tresser, C. Boundary of topological chaos for bimodal maps of the interval J. London Math. Soc. (2) 1988 164 181

[25] Mcmullen, Curtis T. Complex dynamics and renormalization 1994

[26] De Melo, Welington, Van Strien, Sebastian One-dimensional dynamics 1993

[27] Metropolis, N., Stein, M. L., Stein, P. R. On finite limit sets for transformations on the unit interval J. Combinatorial Theory Ser. A 1973 25 44

[28] Milnor, John Remarks on iterated cubic maps Experiment. Math. 1992 5 24

[29] Milnor, John Hyperbolic components 2012 183 232

[30] Milnor, John, Thurston, William On iterated maps of the interval 1988 465 563

[31] Milnor, John, Tresser, Charles On entropy and monotonicity for real cubic maps Comm. Math. Phys. 2000 123 178

[32] Misiurewicz, Michaå‚ Continuity of entropy revisited 1995 495 503

[33] Misiurewicz, M., Szlenk, W. Entropy of piecewise monotone mappings Studia Math. 1980 45 63

[34] Nusse, Helena E., Yorke, James A. Period halving for 𝑥_{𝑛+1} Phys. Lett. A 1988 328 334

[35] Parry, W. On the 𝛽-expansions of real numbers Acta Math. Acad. Sci. Hungar. 1960 401 416

[36] Radulescu, Anca The connected isentropes conjecture in a space of quartic polynomials Discrete Contin. Dyn. Syst. 2007 139 175

[37] Rempe, Lasse, Van Strien, Sebastian Density of hyperbolicity for real transcendental entire functions with real singular values

[38] Shen, Weixiao On the metric properties of multimodal interval maps and 𝐶² density of Axiom A Invent. Math. 2004 301 403

[39] Van Strien, Sebastian One-dimensional dynamics in the new millennium Discrete Contin. Dyn. Syst. 2010 557 588

[40] Van Strien, Sebastian One-parameter families of smooth interval maps: density of hyperbolicity and robust chaos Proc. Amer. Math. Soc. 2010 4443 4446

[41] Van Strien, Sebastian Milnor’s Conjecture on Monotonicity of Topological Entropy: results and questions 673 687

[42] Tsujii, Masato A simple proof for monotonicity of entropy in the quadratic family Ergodic Theory Dynam. Systems 2000 925 933

[43] Yomdin, Y. Volume growth and entropy Israel J. Math. 1987 285 300

[44] Zakeri, Saeed On critical points of proper holomorphic maps on the unit disk Bull. London Math. Soc. 1998 62 66

[45] Zdunik, Anna Entropy of transformations of the unit interval Fund. Math. 1984 235 241

Cité par Sources :