Modular curvature for noncommutative two-tori
Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 639-684 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

In this paper we investigate the curvature of conformal deformations by noncommutative Weyl factors of a flat metric on a noncommutative 2-torus, by analyzing in the framework of spectral triples functionals associated to perturbed Dolbeault operators. The analogue of Gaussian curvature turns out to be a sum of two functions in the modular operator corresponding to the non-tracial weight defined by the conformal factor, applied to expressions involving the derivatives of the same factor. The first is a generating function for the Bernoulli numbers and is applied to the noncommutative Laplacian of the conformal factor, while the second is a two-variable function and is applied to a quadratic form in the first derivatives of the factor. Further outcomes of the paper include a variational proof of the Gauss-Bonnet theorem for noncommutative 2-tori, the modular analogue of Polyakov’s conformal anomaly formula for regularized determinants of Laplacians, a conceptual understanding of the modular curvature as gradient of the Ray-Singer analytic torsion, and the proof using operator positivity that the scale invariant version of the latter assumes its extreme value only at the flat metric.
DOI : 10.1090/S0894-0347-2014-00793-1

Connes, Alain  1   ; Moscovici, Henri  2

1 Collége de France, 3, rue d’Ulm, Paris, F-75005 France – and – IHES, 91440 Bures-Sur-Yvette, France – and – The Ohio State University, Columbus, Ohio 43210
2 Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
@article{10_1090_S0894_0347_2014_00793_1,
     author = {Connes, Alain and Moscovici, Henri},
     title = {Modular curvature for noncommutative two-tori},
     journal = {Journal of the American Mathematical Society},
     pages = {639--684},
     year = {2014},
     volume = {27},
     number = {3},
     doi = {10.1090/S0894-0347-2014-00793-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00793-1/}
}
TY  - JOUR
AU  - Connes, Alain
AU  - Moscovici, Henri
TI  - Modular curvature for noncommutative two-tori
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 639
EP  - 684
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00793-1/
DO  - 10.1090/S0894-0347-2014-00793-1
ID  - 10_1090_S0894_0347_2014_00793_1
ER  - 
%0 Journal Article
%A Connes, Alain
%A Moscovici, Henri
%T Modular curvature for noncommutative two-tori
%J Journal of the American Mathematical Society
%D 2014
%P 639-684
%V 27
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00793-1/
%R 10.1090/S0894-0347-2014-00793-1
%F 10_1090_S0894_0347_2014_00793_1
Connes, Alain; Moscovici, Henri. Modular curvature for noncommutative two-tori. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 639-684. doi: 10.1090/S0894-0347-2014-00793-1

[1] Bhuyain, Tanvir Ahamed, Marcolli, Matilde The Ricci flow on noncommutative two-tori Lett. Math. Phys. 2012 173 194

[2] Branson, Thomas P., Ørsted, Bent Conformal indices of Riemannian manifolds Compositio Math. 1986 261 293

[3] Branson, Thomas P., Ørsted, Bent Conformal geometry and global invariants Differential Geom. Appl. 1991 279 308

[4] Branson, Thomas P., Ørsted, Bent Explicit functional determinants in four dimensions Proc. Amer. Math. Soc. 1991 669 682

[5] Chamseddine, Ali H., Connes, Alain The spectral action principle Comm. Math. Phys. 1997 731 750

[6] Chamseddine, Ali H., Connes, Alain Scale invariance in the spectral action J. Math. Phys. 2006

[7] Cohen, P. B., Connes, Alain Conformal geometry of the irrational rotation algebra

[8] Connes, Alain 𝐶* algèbres et géométrie différentielle C. R. Acad. Sci. Paris Sér. A-B 1980

[9] Connes, Alain Noncommutative geometry 1994

[10] Connes, Alain, Marcolli, Matilde Noncommutative geometry, quantum fields and motives 2008

[11] Connes, A., Moscovici, H. The local index formula in noncommutative geometry Geom. Funct. Anal. 1995 174 243

[12] Connes, Alain, Moscovici, Henri Type III and spectral triples 2008 57 71

[13] Connes, Alain, Moscovici, Henri Modular curvature for noncommutative two-tori

[14] Connes, Alain, Tretkoff, Paula The Gauss-Bonnet theorem for the noncommutative two torus 2011 141 158

[15] Fathizadeh, Farzad, Khalkhali, Masoud The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure J. Noncommut. Geom. 2012 457 480

[16] Fathizadeh, Farzad, Khalkhali, Masoud Scalar curvature for noncommutative two-torus

[17] Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah-Singer index theorem 1984

[18] Hamilton, Richard S. The Ricci flow on surfaces 1988 237 262

[19] Osgood, B., Phillips, R., Sarnak, P. Extremals of determinants of Laplacians J. Funct. Anal. 1988 148 211

[20] Ray, D. B., Singer, I. M. 𝑅-torsion and the Laplacian on Riemannian manifolds Advances in Math. 1971 145 210

[21] Ray, D. B., Singer, I. M. Analytic torsion for complex manifolds Ann. of Math. (2) 1973 154 177

[22] Rieffel, Marc A. 𝐶*-algebras associated with irrational rotations Pacific J. Math. 1981 415 429

Cité par Sources :