Uniqueness of self-similar shrinkers with asymptotically conical ends
Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 613-638 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $C\subset \mathbb {R}^{n+1}$ be a regular cone with vertex at the origin. In this paper, we show the uniqueness for smooth properly embedded self-shrinking ends in $\mathbb {R}^{n+1}$ that are asymptotic to $C$. As an application, we prove that not every regular cone with vertex at the origin has a smooth complete properly embedded self-shrinker asymptotic to it.
DOI : 10.1090/S0894-0347-2014-00792-X

Wang, Lu  1

1 Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
@article{10_1090_S0894_0347_2014_00792_X,
     author = {Wang, Lu},
     title = {Uniqueness of self-similar shrinkers with asymptotically conical ends},
     journal = {Journal of the American Mathematical Society},
     pages = {613--638},
     year = {2014},
     volume = {27},
     number = {3},
     doi = {10.1090/S0894-0347-2014-00792-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00792-X/}
}
TY  - JOUR
AU  - Wang, Lu
TI  - Uniqueness of self-similar shrinkers with asymptotically conical ends
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 613
EP  - 638
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00792-X/
DO  - 10.1090/S0894-0347-2014-00792-X
ID  - 10_1090_S0894_0347_2014_00792_X
ER  - 
%0 Journal Article
%A Wang, Lu
%T Uniqueness of self-similar shrinkers with asymptotically conical ends
%J Journal of the American Mathematical Society
%D 2014
%P 613-638
%V 27
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00792-X/
%R 10.1090/S0894-0347-2014-00792-X
%F 10_1090_S0894_0347_2014_00792_X
Wang, Lu. Uniqueness of self-similar shrinkers with asymptotically conical ends. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 613-638. doi: 10.1090/S0894-0347-2014-00792-X

[1] Abresch, U., Langer, J. The normalized curve shortening flow and homothetic solutions J. Differential Geom. 1986 175 196

[2] Angenent, Sigurd B. Shrinking doughnuts 1992 21 38

[3] Cheng, Xu, Zhou, Detang Volume estimate about shrinkers Proc. Amer. Math. Soc. 2013 687 696

[4] Chopp, David L. Computation of self-similar solutions for mean curvature flow Experiment. Math. 1994 1 15

[5] Colding, Tobias H., Minicozzi, William P., Ii Generic mean curvature flow I: generic singularities Ann. of Math. (2) 2012 755 833

[6] Colding, Tobias H., Minicozzi, William P., Ii Smooth compactness of self-shrinkers Comment. Math. Helv. 2012 463 475

[7] Colding, Tobias H., Minicozzi, William P., Ii Minimal surfaces 1999

[8] Costa, Celso J. Example of a complete minimal immersion in 𝑅³ of genus one and three embedded ends Bol. Soc. Brasil. Mat. 1984 47 54

[9] Ding, Q., Xin, Y.L. Volume growth, eigenvalue and compactness for self-shrinkers Asian J. Math. 2013 443 456

[10] Ecker, Klaus Regularity theory for mean curvature flow 2004

[11] Ecker, Klaus, Huisken, Gerhard Mean curvature evolution of entire graphs Ann. of Math. (2) 1989 453 471

[12] Ecker, Klaus, Huisken, Gerhard Interior estimates for hypersurfaces moving by mean curvature Invent. Math. 1991 547 569

[13] Escauriaza, Luis, Fernández, Francisco Javier Unique continuation for parabolic operators Ark. Mat. 2003 35 60

[14] Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L. Decay at infinity of caloric functions within characteristic hyperplanes Math. Res. Lett. 2006 441 453

[15] Escauriaza, L., Seregin, G., Šverák, V. Backward uniqueness for parabolic equations Arch. Ration. Mech. Anal. 2003 147 157

[16] Escauriaza, L., Seregin, G., Šverák, V. On backward uniqueness for parabolic equations Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 2002

[17] Garofalo, Nicola, Lin, Fang-Hua Unique continuation for elliptic operators: a geometric-variational approach Comm. Pure Appl. Math. 1987 347 366

[18] Garofalo, Nicola, Lin, Fang-Hua Monotonicity properties of variational integrals, 𝐴_{𝑝} weights and unique continuation Indiana Univ. Math. J. 1986 245 268

[19] Hoffman, David, Meeks, William H., Iii Embedded minimal surfaces of finite topology Ann. of Math. (2) 1990 1 34

[20] Huisken, Gerhard Local and global behaviour of hypersurfaces moving by mean curvature 1993 175 191

[21] Huisken, Gerhard Asymptotic behavior for singularities of the mean curvature flow J. Differential Geom. 1990 285 299

[22] Ilmanen, T. Personal communication

[23] Ilmanen, T. Lectures on mean curvature flow and related equations 1995

[24] Ilmanen, T. Singularities of mean curvature flow of surfaces 1995

[25] Jerison, David Carleman inequalities for the Dirac and Laplace operators and unique continuation Adv. in Math. 1986 118 134

[26] Jerison, David, Kenig, Carlos E. Unique continuation and absence of positive eigenvalues for Schrödinger operators Ann. of Math. (2) 1985 463 494

[27] Kapouleas, Nikolaos Complete embedded minimal surfaces of finite total curvature J. Differential Geom. 1997 95 169

[28] Kapouleas, Nikolaos, Kleene, S.J., Møller, N.M. Mean curvature self-shrinkers of high genus: non-compact examples J. Reine Angew. Math.,

[29] Kleene, S.J., Møller, N.M. Self-shrinkers with a rotational symmetry Trans. Amer. Math. Soc.,

[30] Kotschwar, B. Personal communication

[31] Kotschwar, B. Ricci flow and the holonomy group

[32] Kotschwar, Brett L. Backwards uniqueness for the Ricci flow Int. Math. Res. Not. IMRN 2010 4064 4097

[33] Li, Lu, Šverák, Vladimír Backward uniqueness for the heat equation in cones Comm. Partial Differential Equations 2012 1414 1429

[34] Lin, Fang-Hua A uniqueness theorem for parabolic equations Comm. Pure Appl. Math. 1990 127 136

[35] Micu, S., Zuazua, E. On the lack of null-controllability of the heat equation on the half space Port. Math. (N.S.) 2001 1 24

[36] Møller, N.M. Closed self-shrinking surfaces in ℝ³ via the torus 2001

[37] Nguyen, Tu A. On a question of Landis and Oleinik Trans. Amer. Math. Soc. 2010 2875 2899

[38] Nguyen, Xuan Hien Construction of complete embedded self-similar surfaces under mean curvature flow. III Duke Math. J.,

[39] Nguyen, Xuan Hien Construction of complete embedded self-similar surfaces under mean curvature flow. II Adv. Differential Equations 2010 503 530

[40] Nguyen, Xuan Hien Construction of complete embedded self-similar surfaces under mean curvature flow. I Trans. Amer. Math. Soc. 2009 1683 1701

[41] Pan, Yifei, Wolff, Thomas A remark on unique continuation J. Geom. Anal. 1998 599 604

[42] Poon, Chi-Cheung Unique continuation for parabolic equations Comm. Partial Differential Equations 1996 521 539

[43] Russell, David L. A unified boundary controllability theory for hyperbolic and parabolic partial differential equations Studies in Appl. Math. 1973 189 211

[44] Seregin, Gregory, Šverák, Vladimir The Navier-Stokes equations and backward uniqueness 2002 353 366

[45] Sogge, C. D. A unique continuation theorem for second order parabolic differential operators Ark. Mat. 1990 159 182

[46] Wang, L. Uniqueness of self-similar shrinkers with asymptotically cylindrical ends J. Reine Angew. Math. 2013

[47] Wang, Lu A Bernstein type theorem for self-similar shrinkers Geom. Dedicata 2011 297 303

[48] White, Brian Partial regularity of mean-convex hypersurfaces flowing by mean curvature Internat. Math. Res. Notices 1994

Cité par Sources :