@article{10_1090_S0894_0347_2014_00792_X,
author = {Wang, Lu},
title = {Uniqueness of self-similar shrinkers with asymptotically conical ends},
journal = {Journal of the American Mathematical Society},
pages = {613--638},
year = {2014},
volume = {27},
number = {3},
doi = {10.1090/S0894-0347-2014-00792-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00792-X/}
}
TY - JOUR AU - Wang, Lu TI - Uniqueness of self-similar shrinkers with asymptotically conical ends JO - Journal of the American Mathematical Society PY - 2014 SP - 613 EP - 638 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00792-X/ DO - 10.1090/S0894-0347-2014-00792-X ID - 10_1090_S0894_0347_2014_00792_X ER -
%0 Journal Article %A Wang, Lu %T Uniqueness of self-similar shrinkers with asymptotically conical ends %J Journal of the American Mathematical Society %D 2014 %P 613-638 %V 27 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00792-X/ %R 10.1090/S0894-0347-2014-00792-X %F 10_1090_S0894_0347_2014_00792_X
Wang, Lu. Uniqueness of self-similar shrinkers with asymptotically conical ends. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 613-638. doi: 10.1090/S0894-0347-2014-00792-X
[1] , The normalized curve shortening flow and homothetic solutions J. Differential Geom. 1986 175 196
[2] Shrinking doughnuts 1992 21 38
[3] , Volume estimate about shrinkers Proc. Amer. Math. Soc. 2013 687 696
[4] Computation of self-similar solutions for mean curvature flow Experiment. Math. 1994 1 15
[5] , Generic mean curvature flow I: generic singularities Ann. of Math. (2) 2012 755 833
[6] , Smooth compactness of self-shrinkers Comment. Math. Helv. 2012 463 475
[7] , Minimal surfaces 1999
[8] Example of a complete minimal immersion in 𝑅³ of genus one and three embedded ends Bol. Soc. Brasil. Mat. 1984 47 54
[9] , Volume growth, eigenvalue and compactness for self-shrinkers Asian J. Math. 2013 443 456
[10] Regularity theory for mean curvature flow 2004
[11] , Mean curvature evolution of entire graphs Ann. of Math. (2) 1989 453 471
[12] , Interior estimates for hypersurfaces moving by mean curvature Invent. Math. 1991 547 569
[13] , Unique continuation for parabolic operators Ark. Mat. 2003 35 60
[14] , , , Decay at infinity of caloric functions within characteristic hyperplanes Math. Res. Lett. 2006 441 453
[15] , , Backward uniqueness for parabolic equations Arch. Ration. Mech. Anal. 2003 147 157
[16] , , On backward uniqueness for parabolic equations Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 2002
[17] , Unique continuation for elliptic operators: a geometric-variational approach Comm. Pure Appl. Math. 1987 347 366
[18] , Monotonicity properties of variational integrals, 𝐴_{𝑝} weights and unique continuation Indiana Univ. Math. J. 1986 245 268
[19] , Embedded minimal surfaces of finite topology Ann. of Math. (2) 1990 1 34
[20] Local and global behaviour of hypersurfaces moving by mean curvature 1993 175 191
[21] Asymptotic behavior for singularities of the mean curvature flow J. Differential Geom. 1990 285 299
[22] Personal communication
[23] Lectures on mean curvature flow and related equations 1995
[24] Singularities of mean curvature flow of surfaces 1995
[25] Carleman inequalities for the Dirac and Laplace operators and unique continuation Adv. in Math. 1986 118 134
[26] , Unique continuation and absence of positive eigenvalues for Schrödinger operators Ann. of Math. (2) 1985 463 494
[27] Complete embedded minimal surfaces of finite total curvature J. Differential Geom. 1997 95 169
[28] , , Mean curvature self-shrinkers of high genus: non-compact examples J. Reine Angew. Math.,
[29] , Self-shrinkers with a rotational symmetry Trans. Amer. Math. Soc.,
[30] Personal communication
[31] Ricci flow and the holonomy group
[32] Backwards uniqueness for the Ricci flow Int. Math. Res. Not. IMRN 2010 4064 4097
[33] , Backward uniqueness for the heat equation in cones Comm. Partial Differential Equations 2012 1414 1429
[34] A uniqueness theorem for parabolic equations Comm. Pure Appl. Math. 1990 127 136
[35] , On the lack of null-controllability of the heat equation on the half space Port. Math. (N.S.) 2001 1 24
[36] Closed self-shrinking surfaces in ℝ³ via the torus 2001
[37] On a question of Landis and Oleinik Trans. Amer. Math. Soc. 2010 2875 2899
[38] Construction of complete embedded self-similar surfaces under mean curvature flow. III Duke Math. J.,
[39] Construction of complete embedded self-similar surfaces under mean curvature flow. II Adv. Differential Equations 2010 503 530
[40] Construction of complete embedded self-similar surfaces under mean curvature flow. I Trans. Amer. Math. Soc. 2009 1683 1701
[41] , A remark on unique continuation J. Geom. Anal. 1998 599 604
[42] Unique continuation for parabolic equations Comm. Partial Differential Equations 1996 521 539
[43] A unified boundary controllability theory for hyperbolic and parabolic partial differential equations Studies in Appl. Math. 1973 189 211
[44] , The Navier-Stokes equations and backward uniqueness 2002 353 366
[45] A unique continuation theorem for second order parabolic differential operators Ark. Mat. 1990 159 182
[46] Uniqueness of self-similar shrinkers with asymptotically cylindrical ends J. Reine Angew. Math. 2013
[47] A Bernstein type theorem for self-similar shrinkers Geom. Dedicata 2011 297 303
[48] Partial regularity of mean-convex hypersurfaces flowing by mean curvature Internat. Math. Res. Notices 1994
Cité par Sources :