Voir la notice de l'article provenant de la source American Mathematical Society
Dudas, Olivier 1 ; Rouquier, Raphaël 2
@article{10_1090_S0894_0347_2014_00791_8,
author = {Dudas, Olivier and Rouquier, Rapha\~A{\guillemotleft}l},
title = {Coxeter orbits and {Brauer} trees {III}},
journal = {Journal of the American Mathematical Society},
pages = {1117--1145},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {2014},
doi = {10.1090/S0894-0347-2014-00791-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00791-8/}
}
TY - JOUR AU - Dudas, Olivier AU - Rouquier, Raphaël TI - Coxeter orbits and Brauer trees III JO - Journal of the American Mathematical Society PY - 2014 SP - 1117 EP - 1145 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00791-8/ DO - 10.1090/S0894-0347-2014-00791-8 ID - 10_1090_S0894_0347_2014_00791_8 ER -
%0 Journal Article %A Dudas, Olivier %A Rouquier, Raphaël %T Coxeter orbits and Brauer trees III %J Journal of the American Mathematical Society %D 2014 %P 1117-1145 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00791-8/ %R 10.1090/S0894-0347-2014-00791-8 %F 10_1090_S0894_0347_2014_00791_8
Dudas, Olivier; Rouquier, Raphaël. Coxeter orbits and Brauer trees III. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1117-1145. doi: 10.1090/S0894-0347-2014-00791-8
[1] , Homotopy limits in triangulated categories Compositio Math. 1993 209 234
[2] Quasi-isolated elements in reductive groups Comm. Algebra 2005 2315 2337
[3] , Catégories dérivées et variétés de Deligne-Lusztig Publ. Math. Inst. Hautes Ãtudes Sci. 2003 1 59
[4] Isométries de caractères et équivalences de Morita ou dérivées Inst. Hautes Ãtudes Sci. Publ. Math. 1990 45 63
[5] , Zyklotomische Heckealgebren Astérisque 1993 119 189
[6] , , Complex reflection groups, braid groups, Hecke algebras J. Reine Angew. Math. 1998 127 190
[7] , Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées 1997 73 139
[8] , Blocs et séries de Lusztig dans un groupe réductif fini J. Reine Angew. Math. 1989 56 67
[9] , Local methods for blocks of reductive groups over a finite field 1997 141 163
[10] , Representation theory of finite reductive groups 2004
[11] On the cohomology of Deligne-Lusztig varieties 2011
[12] Perverse equivalences and Brouéâs conjecture II: the cyclic case 2012
[13] , , Brauer trees of unipotent blocks of ð¸â(ð) and ð¸â(ð) 2013
[14] , Representations of reductive groups over finite fields Ann. of Math. (2) 1976 103 161
[15] The centralizers of semisimple elements of the Chevalley groups ð¸â and ð¸â Tokyo J. Math. 1983 191 216
[16] , Centralizers of semisimple elements in finite twisted groups of Lie type J. London Math. Soc. (2) 1985 48 54
[17] , Representations of finite groups of Lie type 1991
[18] , Parabolic Deligne-Lusztig varieties, arxiv:1110.4863 2011
[19] Coxeter orbits and Brauer trees Adv. Math. 2012 3398 3435
[20] Coxeter Orbits and Brauer trees II Int. Math. Res. Not. 2013
[21] The representation theory of finite groups 1982
[22] , The semisimple conjugacy classes of finite groups of Lie type ð¸â and ð¸â Comm. Algebra 1993 93 161
[23] , Brauer trees in classical groups J. Algebra 1990 179 225
[24] Brauer trees of Hecke algebras Comm. Algebra 1992 2937 2973
[25] , , The classification of the finite simple groups 1994
[26] Walking around the Brauer Tree J. Austral. Math. Soc. 1974 197 213
[27] , , Cohomological goodness and the profinite completion of Bianchi groups Duke Math. J. 2008 53 72
[28] The Brauer trees of the Ree groups Comm. Algebra 1991 871 888
[29] , The Brauer trees of the exceptional Chevalley groups of types ð¹â and ²ð¸â Arch. Math. (Basel) 1998 16 21
[30] , , The Brauer trees of the exceptional Chevalley groups of type ð¸â Manuscripta Math. 1995 131 144
[31] On the construction of triangle equivalences 1998 155 176
[32] Invariance and localization for cyclic homology of DG algebras J. Pure Appl. Algebra 1998 223 273
[33] , Sous les catégories dérivées C. R. Acad. Sci. Paris Sér. I Math. 1987 225 228
[34] Coxeter orbits and eigenspaces of Frobenius Invent. Math. 1976/77 101 159
[35] Galois actions on complex braid groups Galois-Teichmüller theory and Arithmetic Geometry, Math. Soc. of Japan 2012
[36] A note on the ð¾(ð,1) property of the orbit space of the unitary reflection group ðº(ð,ð,ð) Sci. Papers College Arts Sci. Univ. Tokyo 1983 1 6
[37] Derived categories and stable equivalence J. Pure Appl. Algebra 1989 303 317
[38] Finite group actions and étale cohomology Inst. Hautes Ãtudes Sci. Publ. Math. 1994
[39] Complexes de chaînes étales et courbes de Deligne-Lusztig J. Algebra 2002 482 508
[40] Derived equivalences and finite dimensional algebras 2006 191 221
[41] Galois cohomology 2002
[42] Brauer trees for blocks of cyclic defect in the groups ðºâ(ð) for primes dividing ð²±ð+1 J. Algebra 1989 378 396
[43] Regular elements of finite reflection groups Invent. Math. 1974 159 198
Cité par Sources :