Coxeter orbits and Brauer trees III
Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1117-1145

Voir la notice de l'article provenant de la source American Mathematical Society

This article is the final one of a series of articles on certain blocks of modular representations of finite groups of Lie type and the associated geometry. We prove the conjecture of Broué on derived equivalences induced by the complex of cohomology of Deligne-Lusztig varieties in the case of Coxeter elements. We also prove a conjecture of Hiß, Lübeck, and Malle on the Brauer trees of the corresponding blocks. As a consequence, we determine the Brauer tree (in particular, the decomposition matrix) of the principal $\ell$-block of $E_7(q)$ when $\ell \mid \Phi _{18}(q)$ and $E_8(q)$ when $\ell \mid \Phi _{18}(q)$ or $\ell \mid \Phi _{30}(q)$.
DOI : 10.1090/S0894-0347-2014-00791-8

Dudas, Olivier 1 ; Rouquier, Raphaël 2

1 Université Denis Diderot – Paris 7, UFR de Mathématiques, Institut de Mathématiques de Jussieu, Case 7012, 75205 Paris Cedex 13, France
2 Department of Mathematics, UCLA, Box 951555, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_2014_00791_8,
     author = {Dudas, Olivier and Rouquier, Rapha\~A{\guillemotleft}l},
     title = {Coxeter orbits and {Brauer} trees {III}},
     journal = {Journal of the American Mathematical Society},
     pages = {1117--1145},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00791-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00791-8/}
}
TY  - JOUR
AU  - Dudas, Olivier
AU  - Rouquier, Raphaël
TI  - Coxeter orbits and Brauer trees III
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 1117
EP  - 1145
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00791-8/
DO  - 10.1090/S0894-0347-2014-00791-8
ID  - 10_1090_S0894_0347_2014_00791_8
ER  - 
%0 Journal Article
%A Dudas, Olivier
%A Rouquier, Raphaël
%T Coxeter orbits and Brauer trees III
%J Journal of the American Mathematical Society
%D 2014
%P 1117-1145
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00791-8/
%R 10.1090/S0894-0347-2014-00791-8
%F 10_1090_S0894_0347_2014_00791_8
Dudas, Olivier; Rouquier, Raphaël. Coxeter orbits and Brauer trees III. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1117-1145. doi: 10.1090/S0894-0347-2014-00791-8

[1] Bã¶Kstedt, Marcel, Neeman, Amnon Homotopy limits in triangulated categories Compositio Math. 1993 209 234

[2] Bonnafã©, Cã©Dric Quasi-isolated elements in reductive groups Comm. Algebra 2005 2315 2337

[3] Bonnafã©, Cã©Dric, Rouquier, Raphaã«L Catégories dérivées et variétés de Deligne-Lusztig Publ. Math. Inst. Hautes Études Sci. 2003 1 59

[4] Brouã©, Michel Isométries de caractères et équivalences de Morita ou dérivées Inst. Hautes Études Sci. Publ. Math. 1990 45 63

[5] Brouã©, Michel, Malle, Gunter Zyklotomische Heckealgebren Astérisque 1993 119 189

[6] Brouã©, Michel, Malle, Gunter, Rouquier, Raphaã«L Complex reflection groups, braid groups, Hecke algebras J. Reine Angew. Math. 1998 127 190

[7] Brouã©, Michel, Michel, Jean Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées 1997 73 139

[8] Brouã©, Michel, Michel, Jean Blocs et séries de Lusztig dans un groupe réductif fini J. Reine Angew. Math. 1989 56 67

[9] Cabanes, Marc, Enguehard, Michel Local methods for blocks of reductive groups over a finite field 1997 141 163

[10] Cabanes, Marc, Enguehard, Michel Representation theory of finite reductive groups 2004

[11] Craven, D. On the cohomology of Deligne-Lusztig varieties 2011

[12] Craven, D. Perverse equivalences and Broué’s conjecture II: the cyclic case 2012

[13] Craven, D., Dudas, O., Rouquier, R. Brauer trees of unipotent blocks of 𝐸₇(𝑞) and 𝐸₈(𝑞) 2013

[14] Deligne, P., Lusztig, G. Representations of reductive groups over finite fields Ann. of Math. (2) 1976 103 161

[15] Deriziotis, D. I. The centralizers of semisimple elements of the Chevalley groups 𝐸₇ and 𝐸₈ Tokyo J. Math. 1983 191 216

[16] Deriziotis, D. I., Liebeck, Martin W. Centralizers of semisimple elements in finite twisted groups of Lie type J. London Math. Soc. (2) 1985 48 54

[17] Digne, Franã§Ois, Michel, Jean Representations of finite groups of Lie type 1991

[18] Digne, Franã§Ois, Michel, Jean Parabolic Deligne-Lusztig varieties, arxiv:1110.4863 2011

[19] Dudas, Olivier Coxeter orbits and Brauer trees Adv. Math. 2012 3398 3435

[20] Dudas, Olivier Coxeter Orbits and Brauer trees II Int. Math. Res. Not. 2013

[21] Feit, Walter The representation theory of finite groups 1982

[22] Fleischmann, Peter, Janiszczak, Ingo The semisimple conjugacy classes of finite groups of Lie type 𝐸₆ and 𝐸₇ Comm. Algebra 1993 93 161

[23] Fong, Paul, Srinivasan, Bhama Brauer trees in classical groups J. Algebra 1990 179 225

[24] Geck, Meinolf Brauer trees of Hecke algebras Comm. Algebra 1992 2937 2973

[25] Gorenstein, Daniel, Lyons, Richard, Solomon, Ronald The classification of the finite simple groups 1994

[26] Green, J. A. Walking around the Brauer Tree J. Austral. Math. Soc. 1974 197 213

[27] Grunewald, F., Jaikin-Zapirain, A., Zalesskii, P. A. Cohomological goodness and the profinite completion of Bianchi groups Duke Math. J. 2008 53 72

[28] Hiss, Gerhard The Brauer trees of the Ree groups Comm. Algebra 1991 871 888

[29] Hiss, Gerhard, Lã¼Beck, Frank The Brauer trees of the exceptional Chevalley groups of types 𝐹₄ and ²𝐸₆ Arch. Math. (Basel) 1998 16 21

[30] Hiss, Gerhard, Lã¼Beck, Frank, Malle, Gunter The Brauer trees of the exceptional Chevalley groups of type 𝐸₆ Manuscripta Math. 1995 131 144

[31] Keller, Bernhard On the construction of triangle equivalences 1998 155 176

[32] Keller, Bernhard Invariance and localization for cyclic homology of DG algebras J. Pure Appl. Algebra 1998 223 273

[33] Keller, Bernhard, Vossieck, Dieter Sous les catégories dérivées C. R. Acad. Sci. Paris Sér. I Math. 1987 225 228

[34] Lusztig, G. Coxeter orbits and eigenspaces of Frobenius Invent. Math. 1976/77 101 159

[35] Marin, I. Galois actions on complex braid groups Galois-Teichmüller theory and Arithmetic Geometry, Math. Soc. of Japan 2012

[36] Nakamura, Tokushi A note on the 𝐾(𝜋,1) property of the orbit space of the unitary reflection group 𝐺(𝑚,𝑙,𝑛) Sci. Papers College Arts Sci. Univ. Tokyo 1983 1 6

[37] Rickard, Jeremy Derived categories and stable equivalence J. Pure Appl. Algebra 1989 303 317

[38] Rickard, Jeremy Finite group actions and étale cohomology Inst. Hautes Études Sci. Publ. Math. 1994

[39] Rouquier, Raphaã«L Complexes de chaînes étales et courbes de Deligne-Lusztig J. Algebra 2002 482 508

[40] Rouquier, Raphaã«L Derived equivalences and finite dimensional algebras 2006 191 221

[41] Serre, Jean-Pierre Galois cohomology 2002

[42] Shamash, Josephine Brauer trees for blocks of cyclic defect in the groups 𝐺₂(𝑞) for primes dividing 𝑞²±𝑞+1 J. Algebra 1989 378 396

[43] Springer, T. A. Regular elements of finite reflection groups Invent. Math. 1974 159 198

Cité par Sources :