The metamathematics of Stable Ramsey’s Theorem for Pairs
Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 863-892

Voir la notice de l'article provenant de la source American Mathematical Society

We show that, over the base theory $\textit {RCA}_0$, Stable Ramsey’s Theorem for Pairs implies neither Ramsey’s Theorem for Pairs nor $\Sigma ^0_2$-induction.
DOI : 10.1090/S0894-0347-2014-00789-X

Chong, C. 1 ; Slaman, Theodore 2 ; Yang, Yue 1

1 Department of Mathematics, National University of Singapore, Singapore 119076
2 Department of Mathematics, University of California, Berkeley, Berkeley, California 94720-3840
@article{10_1090_S0894_0347_2014_00789_X,
     author = {Chong, C. and Slaman, Theodore and Yang, Yue},
     title = {The metamathematics of {Stable} {Ramsey\^a€™s} {Theorem} for {Pairs}},
     journal = {Journal of the American Mathematical Society},
     pages = {863--892},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00789-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00789-X/}
}
TY  - JOUR
AU  - Chong, C.
AU  - Slaman, Theodore
AU  - Yang, Yue
TI  - The metamathematics of Stable Ramsey’s Theorem for Pairs
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 863
EP  - 892
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00789-X/
DO  - 10.1090/S0894-0347-2014-00789-X
ID  - 10_1090_S0894_0347_2014_00789_X
ER  - 
%0 Journal Article
%A Chong, C.
%A Slaman, Theodore
%A Yang, Yue
%T The metamathematics of Stable Ramsey’s Theorem for Pairs
%J Journal of the American Mathematical Society
%D 2014
%P 863-892
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00789-X/
%R 10.1090/S0894-0347-2014-00789-X
%F 10_1090_S0894_0347_2014_00789_X
Chong, C.; Slaman, Theodore; Yang, Yue. The metamathematics of Stable Ramsey’s Theorem for Pairs. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 863-892. doi: 10.1090/S0894-0347-2014-00789-X

[1] Cholak Peter A., Jockusch Carl G., Slaman Theodore A. On the strength of Ramsey’s theorem for pairs J. Symbolic Logic 2001 1 55

[2] Chong C. T., Steffen Lempp, Yue Yang On the role of the collection principle for Σ⁰₂-formulas in second-order reverse mathematics Proc. Amer. Math. Soc. 2010 1093 1100

[3] Downey, Rod, Hirschfeldt, Denis R., Lempp, Steffen, Solomon, Reed A Δ⁰₂ set with no infinite low subset in either it or its complement J. Symbolic Logic 2001 1371 1381

[4] Hã¡Jek, Petr Interpretability and fragments of arithmetic 1993 185 196

[5] Hirst, Jeffry Lynn COMBINATORICS IN SUBSYSTEMS OF SECOND ORDER ARITHMETIC 1987 153

[6] Jockusch, Carl G., Jr. Ramsey’s theorem and recursion theory J. Symbolic Logic 1972 268 280

[7] Jockusch, Carl G., Jr., Soare, Robert I. Π⁰₁ classes and degrees of theories Trans. Amer. Math. Soc. 1972 33 56

[8] Kaye, Richard Models of Peano arithmetic 1991

[9] Kleene, S. C. Recursive predicates and quantifiers Trans. Amer. Math. Soc. 1943 41 73

[10] Liu, Jiayi 𝖱𝖳²₂ does not imply 𝖶𝖪𝖫₀ J. Symbolic Logic 2012 609 620

[11] Mcaloon, Kenneth Completeness theorems, incompleteness theorems and models of arithmetic Trans. Amer. Math. Soc. 1978 253 277

[12] Paris, J. B., Kirby, L. A. S. Σ_{𝑛}-collection schemas in arithmetic 1978 199 209

[13] Rogers, Hartley, Jr. Theory of recursive functions and effective computability 1987

[14] Sacks, Gerald E. Higher recursion theory 1990

[15] Seetapun, David, Slaman Theodore A. On the strength of Ramsey’s theorem Notre Dame J. Formal Logic 1995 570 582

[16] Simpson, Stephen G. Subsystems of second order arithmetic 2009

[17] Slaman, Theodore A. Σ_{𝑛}-bounding and Δ_{𝑛}-induction Proc. Amer. Math. Soc. 2004 2449 2456

[18] Specker, E. Ramsey’s theorem does not hold in recursive set theory 1971 439 442

Cité par Sources :