@article{10_1090_S0894_0347_2014_00788_8,
author = {Gou\"ezel, S\'ebastien},
title = {Local limit theorem for symmetric random walks in {Gromov-hyperbolic} groups},
journal = {Journal of the American Mathematical Society},
pages = {893--928},
year = {2014},
volume = {27},
number = {3},
doi = {10.1090/S0894-0347-2014-00788-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00788-8/}
}
TY - JOUR AU - Gouëzel, Sébastien TI - Local limit theorem for symmetric random walks in Gromov-hyperbolic groups JO - Journal of the American Mathematical Society PY - 2014 SP - 893 EP - 928 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00788-8/ DO - 10.1090/S0894-0347-2014-00788-8 ID - 10_1090_S0894_0347_2014_00788_8 ER -
%0 Journal Article %A Gouëzel, Sébastien %T Local limit theorem for symmetric random walks in Gromov-hyperbolic groups %J Journal of the American Mathematical Society %D 2014 %P 893-928 %V 27 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00788-8/ %R 10.1090/S0894-0347-2014-00788-8 %F 10_1090_S0894_0347_2014_00788_8
Gouëzel, Sébastien. Local limit theorem for symmetric random walks in Gromov-hyperbolic groups. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 893-928. doi: 10.1090/S0894-0347-2014-00788-8
[1] Random walks on discrete groups of polynomial volume growth Ann. Probab. 2002 723 801
[2] Negatively curved manifolds, elliptic operators, and the Martin boundary Ann. of Math. (2) 1987 495 536
[3] , , Harmonic measures versus quasiconformal measures for hyperbolic groups Ann. Sci. Éc. Norm. Supér. (4) 2011 683 721
[4] Théorème central limite local sur certains groupes de Lie Ann. Sci. École Norm. Sup. (4) 1981
[5] , Embeddings of Gromov hyperbolic spaces Geom. Funct. Anal. 2000 266 306
[6] The combinatorial structure of cocompact discrete hyperbolic groups Geom. Dedicata 1984 123 148
[7] , Combable functions, quasimorphisms, and the central limit theorem Ergodic Theory Dynam. Systems 2010 1343 1369
[8] , , Functions of probability measures J. Analyse Math. 1973 255 302
[9] Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov Pacific J. Math. 1993 241 270
[10] , , , On the growth of quotients of Kleinian groups Ergodic Theory Dynam. Systems 2011 835 851
[11] Random walks on groups and random transformations 2002 931 1014
[12] , Sur les groupes hyperboliques d’après Mikhael Gromov 1988
[13] , Random walks on co-compact Fuchsian groups Ann. Sci. Éc. Norm. Supér. (4) 2013
[14] , , The ratio set of the harmonic measure of a random walk on a hyperbolic group Israel J. Math. 2008 285 316
[15] Perturbation theory for linear operators 1966
[16] Ergodic theorems 1985
[17] Finite range random walk on free groups and homogeneous trees Ann. Probab. 1993 2087 2130
[18] Regularity of the entropy for random walks on hyperbolic groups Ann. Probab. 2013 3582 3605
[19] , Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268
[20] Martin boundaries of random walks on Fuchsian groups Israel J. Math. 1983 221 242
[21] Random walks on infinite graphs and groups 2000
Cité par Sources :