Local limit theorem for symmetric random walks in Gromov-hyperbolic groups
Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 893-928 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Completing a strategy of Gouëzel and Lalley, we prove a local limit theorem for the random walk generated by any symmetric finitely supported probability measure on a non-elementary Gromov-hyperbolic group: denoting by $R$ the inverse of the spectral radius of the random walk, the probability to return to the identity at time $n$ behaves like $C R^{-n}n^{-3/2}$. An important step in the proof is to extend Ancona’s results on the Martin boundary up to the spectral radius: we show that the Martin boundary for $R$-harmonic functions coincides with the geometric boundary of the group. In Appendix A, we explain how the symmetry assumption of the measure can be dispensed with for surface groups.
DOI : 10.1090/S0894-0347-2014-00788-8

Gouëzel, Sébastien  1

1 IRMAR, CNRS UMR 6625, Université de Rennes 1, 35042 Rennes, France
@article{10_1090_S0894_0347_2014_00788_8,
     author = {Gou\"ezel, S\'ebastien},
     title = {Local limit theorem for symmetric random walks in {Gromov-hyperbolic} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {893--928},
     year = {2014},
     volume = {27},
     number = {3},
     doi = {10.1090/S0894-0347-2014-00788-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00788-8/}
}
TY  - JOUR
AU  - Gouëzel, Sébastien
TI  - Local limit theorem for symmetric random walks in Gromov-hyperbolic groups
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 893
EP  - 928
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00788-8/
DO  - 10.1090/S0894-0347-2014-00788-8
ID  - 10_1090_S0894_0347_2014_00788_8
ER  - 
%0 Journal Article
%A Gouëzel, Sébastien
%T Local limit theorem for symmetric random walks in Gromov-hyperbolic groups
%J Journal of the American Mathematical Society
%D 2014
%P 893-928
%V 27
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00788-8/
%R 10.1090/S0894-0347-2014-00788-8
%F 10_1090_S0894_0347_2014_00788_8
Gouëzel, Sébastien. Local limit theorem for symmetric random walks in Gromov-hyperbolic groups. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 893-928. doi: 10.1090/S0894-0347-2014-00788-8

[1] Alexopoulos, Georgios K. Random walks on discrete groups of polynomial volume growth Ann. Probab. 2002 723 801

[2] Ancona, Alano Negatively curved manifolds, elliptic operators, and the Martin boundary Ann. of Math. (2) 1987 495 536

[3] Blachère, Sébastien, Haïssinsky, Peter, Mathieu, Pierre Harmonic measures versus quasiconformal measures for hyperbolic groups Ann. Sci. Éc. Norm. Supér. (4) 2011 683 721

[4] Bougerol, Philippe Théorème central limite local sur certains groupes de Lie Ann. Sci. École Norm. Sup. (4) 1981

[5] Bonk, Mario, Schramm, Oded Embeddings of Gromov hyperbolic spaces Geom. Funct. Anal. 2000 266 306

[6] Cannon, James W. The combinatorial structure of cocompact discrete hyperbolic groups Geom. Dedicata 1984 123 148

[7] Calegari, Danny, Fujiwara, Koji Combable functions, quasimorphisms, and the central limit theorem Ergodic Theory Dynam. Systems 2010 1343 1369

[8] Chover, J., Ney, P., Wainger, S. Functions of probability measures J. Analyse Math. 1973 255 302

[9] Coornaert, Michel Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov Pacific J. Math. 1993 241 270

[10] Dal’Bo, Françoise, Peigné, Marc, Picaud, Jean-Claude, Sambusetti, Andrea On the growth of quotients of Kleinian groups Ergodic Theory Dynam. Systems 2011 835 851

[11] Furman, Alex Random walks on groups and random transformations 2002 931 1014

[12] Ghys, Étienne, De La Harpe, Pierre Sur les groupes hyperboliques d’après Mikhael Gromov 1988

[13] Gouëzel, Sébastien, Lalley, Steven P. Random walks on co-compact Fuchsian groups Ann. Sci. Éc. Norm. Supér. (4) 2013

[14] Izumi, Masaki, Neshveyev, Sergey, Okayasu, Rui The ratio set of the harmonic measure of a random walk on a hyperbolic group Israel J. Math. 2008 285 316

[15] Kato, Tosio Perturbation theory for linear operators 1966

[16] Krengel, Ulrich Ergodic theorems 1985

[17] Lalley, Steven P. Finite range random walk on free groups and homogeneous trees Ann. Probab. 1993 2087 2130

[18] Ledrappier, François Regularity of the entropy for random walks on hyperbolic groups Ann. Probab. 2013 3582 3605

[19] Parry, William, Pollicott, Mark Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268

[20] Series, Caroline Martin boundaries of random walks on Fuchsian groups Israel J. Math. 1983 221 242

[21] Woess, Wolfgang Random walks on infinite graphs and groups 2000

Cité par Sources :