Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields
Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 753-862

Voir la notice de l'article provenant de la source American Mathematical Society

The purpose of this article is to prove the Iwasawa main conjecture for CM fields in certain cases through a detailed study on the divisibility relation between $p$-adic $L$-functions for CM fields and Eisenstein ideals of unitary groups of degree three.
DOI : 10.1090/S0894-0347-2014-00786-4

Hsieh, Ming-Lun 1

1 Department of Mathematics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
@article{10_1090_S0894_0347_2014_00786_4,
     author = {Hsieh, Ming-Lun},
     title = {Eisenstein congruence on unitary groups and {Iwasawa} main conjectures for {CM} fields},
     journal = {Journal of the American Mathematical Society},
     pages = {753--862},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00786-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00786-4/}
}
TY  - JOUR
AU  - Hsieh, Ming-Lun
TI  - Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 753
EP  - 862
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00786-4/
DO  - 10.1090/S0894-0347-2014-00786-4
ID  - 10_1090_S0894_0347_2014_00786_4
ER  - 
%0 Journal Article
%A Hsieh, Ming-Lun
%T Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields
%J Journal of the American Mathematical Society
%D 2014
%P 753-862
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00786-4/
%R 10.1090/S0894-0347-2014-00786-4
%F 10_1090_S0894_0347_2014_00786_4
Hsieh, Ming-Lun. Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 753-862. doi: 10.1090/S0894-0347-2014-00786-4

[1] Bellaã¯Che, Joã«L, Chenevier, Gaã«Tan Formes non tempérées pour 𝑈(3) et conjectures de Bloch-Kato Ann. Sci. École Norm. Sup. (4) 2004 611 662

[2] Bellaã¯Che, Joã«L, Chenevier, Gaã«Tan Families of Galois representations and Selmer groups Astérisque 2009

[3] Blasius, Don, Rogawski, Jonathan D. Motives for Hilbert modular forms Invent. Math. 1993 55 87

[4] Burungale, A. On the 𝜇-invariant of cyclotomic derivative of Katz 𝑝-adic 𝐿-functions J. Inst. Math. Jussieu 2014

[5] Casselman, W. The unramified principal series of 𝔭-adic groups. I. The spherical function Compositio Math. 1980 387 406

[6] Coates, John, Goldstein, Catherine Some remarks on the main conjecture for elliptic curves with complex multiplication Amer. J. Math. 1983 337 366

[7] Chai, Ching-Li Compactification of Siegel moduli schemes 1985

[8] Chai, Ching-Li Methods for 𝑝-adic monodromy J. Inst. Math. Jussieu 2008 247 268

[9] Deligne, Pierre, Ribet, Kenneth A. Values of abelian 𝐿-functions at negative integers over totally real fields Invent. Math. 1980 227 286

[10] Faltings, G., Chai, C.-L. Degeneration of abelian varieties 1990

[11] Finis, Tobias Divisibility of anticyclotomic 𝐿-functions and theta functions with complex multiplication Ann. of Math. (2) 2006 767 807

[12] Fujiwara, K. Arithmetic compactifications of Shimura varieties (I) 1989

[13] Gelbart, Stephen, Piatetski-Shapiro, Ilya, Rallis, Stephen Explicit constructions of automorphic 𝐿-functions 1987

[14] Greenberg, Ralph Iwasawa theory and 𝑝-adic deformations of motives 1994 193 223

[15] Greenberg, Ralph Iwasawa theory for elliptic curves 1999 51 144

[16] Greenberg, Ralph, Vatsal, Vinayak On the Iwasawa invariants of elliptic curves Invent. Math. 2000 17 63

[17] Harris, Michael Eisenstein series on Shimura varieties Ann. of Math. (2) 1984 59 94

[18] Hida, Haruzo Elementary theory of 𝐿-functions and Eisenstein series 1993

[19] Hida, Haruzo Control theorems of 𝑝-nearly ordinary cohomology groups for 𝑆𝐿(𝑛) Bull. Soc. Math. France 1995 425 475

[20] Hida, Haruzo Automorphic induction and Leopoldt type conjectures for 𝐺𝐿(𝑛) Asian J. Math. 1998 667 710

[21] Hida, Haruzo Control theorems of coherent sheaves on Shimura varieties of PEL type J. Inst. Math. Jussieu 2002 1 76

[22] Hida, H. Non-vanishing modulo 𝑝 of Hecke 𝐿-values 2004

[23] Hida, H. 𝑝-adic automorphic forms on Shimura varieties 2004

[24] Hida, Haruzo Anticyclotomic main conjectures Doc. Math. 2006 465 532

[25] Hida, H. Non-vanishing modulo 𝑝 of Hecke 𝐿-values and application 2007

[26] Hida, Haruzo Irreducibility of the Igusa tower Acta Math. Sin. (Engl. Ser.) 2009 1 20

[27] Hida, H. Quadratic exercises in Iwasawa theory Int. Math. Res. Not. IMRN 2009

[28] Hida, Haruzo The Iwasawa 𝜇-invariant of 𝑝-adic Hecke 𝐿-functions Ann. of Math. (2) 2010 41 137

[29] Harris, Michael, Li, Jian-Shu, Skinner, Christopher M. 𝑝-adic 𝐿-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure Doc. Math. 2006 393 464

[30] Hsieh, Ming-Lun The algebraic functional equation of Selmer groups for CM fields J. Number Theory 2010 1914 1924

[31] Hsieh, Ming-Lun Ordinary 𝑝-adic Eisenstein series and 𝑝-adic 𝐿-functions for unitary groups Ann. Inst. Fourier (Grenoble) 2011 987 1059

[32] Hsieh, Ming-Lun On the non-vanishing of Hecke 𝐿-values modulo 𝑝 Amer. J. Math. 2012 1503 1539

[33] Hsieh, M.-L. On the 𝜇-invariant of anticyclotomic 𝑝-adic 𝐿-functions for CM fields J. Reine Angew. Math. 2013

[34] Hida, H., Tilouine, J. Anti-cyclotomic Katz 𝑝-adic 𝐿-functions and congruence modules Ann. Sci. École Norm. Sup. (4) 1993 189 259

[35] Hida, H., Tilouine, J. On the anticyclotomic main conjecture for CM fields Invent. Math. 1994 89 147

[36] Jantzen, Jens Carsten Representations of algebraic groups 1987

[37] Katz, Nicholas M. 𝑝-adic 𝐿-functions for CM fields Invent. Math. 1978 199 297

[38] Katz, N. Serre-Tate local moduli 1981

[39] Kottwitz, Robert E. Points on some Shimura varieties over finite fields J. Amer. Math. Soc. 1992 373 444

[40] Langlands, Robert P. On the functional equations satisfied by Eisenstein series 1976

[41] Lan, K.-W. Arithmetic compactification of PEL-type Shimura varieties 2008

[42] Lan, Kai-Wen Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties J. Reine Angew. Math. 2012 163 228

[43] Li, Jian-Shu Nonvanishing theorems for the cohomology of certain arithmetic quotients J. Reine Angew. Math. 1992 177 217

[44] Mainardi, F. Sur la conjecture principale de iwasawa pour les corps CM 2004

[45] Mainardi, Fabio On the main conjecture for CM fields Amer. J. Math. 2008 499 538

[46] Mauger, David Algèbres de Hecke quasi-ordinaires universelles Ann. Sci. École Norm. Sup. (4) 2004 171 222

[47] Murase, Atsushi, Sugano, Takashi Local theory of primitive theta functions Compositio Math. 2000 273 302

[48] Murase, Atsushi, Sugano, Takashi Fourier-Jacobi expansion of Eisenstein series on unitary groups of degree three J. Math. Sci. Univ. Tokyo 2002 347 404

[49] Murase, Atsushi, Sugano, Takashi On the Fourier-Jacobi expansion of the unitary Kudla lift Compos. Math. 2007

[50] Mumford, David Abelian varieties 1970

[51] Mazur, B., Wiles, A. Class fields of abelian extensions of 𝑄 Invent. Math. 1984 179 330

[52] Nekovã¡Å™, Jan Selmer complexes Astérisque 2006

[53] Perrin-Riou, B. Arithmétique des courbes elliptiques et théorie d’Iwasawa Mém. Soc. Math. France (N.S.) 1984 130

[54] Ribet, Kenneth A. A modular construction of unramified 𝑝-extensions of 𝑄(𝜇_{𝑝}) Invent. Math. 1976 151 162

[55] Rogawski, Jonathan D. Analytic expression for the number of points mod 𝑝 1992 65 109

[56] Rohrlich, David E. Root numbers of Hecke 𝐿-functions of CM fields Amer. J. Math. 1982 517 543

[57] Rubin, Karl The “main conjectures” of Iwasawa theory for imaginary quadratic fields Invent. Math. 1991 25 68

[58] Serre, Jean-Pierre Abelian 𝑙-adic representations and elliptic curves 1968

[59] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3) 1962/1964

[60] Revêtements étales et groupe fondamental 1971

[61] Shimura, Goro The special values of the zeta functions associated with Hilbert modular forms Duke Math. J. 1978 637 679

[62] Shintani, T. On automorphic forms on unitary groups of oreder 3 1979

[63] Shimura, Goro On Eisenstein series Duke Math. J. 1983 417 476

[64] Shimura, G. Euler products and Eisenstein series 1997

[65] Shimura, Goro Abelian varieties with complex multiplication and modular functions 1998

[66] Skinner, C., Urban, E. The Iwasawa Main Conjectures for 𝐺𝐿₂ Inventiones Mathematicae 2013

[67] Tilouine, J., Urban, E. Several-variable 𝑝-adic families of Siegel-Hilbert cusp eigensystems and their Galois representations Ann. Sci. École Norm. Sup. (4) 1999 499 574

[68] Urban, E. On residually reducible representations on local rings J. Algebra 1999 738 742

[69] Urban, Eric Selmer groups and the Eisenstein-Klingen ideal Duke Math. J. 2001 485 525

[70] Urban, Eric Groupes de Selmer er fonctions L p-adiques pour les représentations modulaires adjointes 2006

[71] Wedhorn, Torsten Ordinariness in good reductions of Shimura varieties of PEL-type Ann. Sci. École Norm. Sup. (4) 1999 575 618

[72] Wiles, A. The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540

[73] Yager, Rodney I. On two variable 𝑝-adic 𝐿-functions Ann. of Math. (2) 1982 411 449

[74] Yang, Tonghai Theta liftings and Hecke 𝐿-functions J. Reine Angew. Math. 1997 25 53

Cité par Sources :