A Khovanov stable homotopy type
Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 983-1042

Voir la notice de l'article provenant de la source American Mathematical Society

Given a link diagram $L$ we construct spectra $\mathcal {X}_{Kh}^j(L)$ so that the Khovanov homology $K^{i,j}(L)$ is isomorphic to the (reduced) singular cohomology $\widetilde {H}^{i}(\mathcal {X}_{Kh}^j(L))$. The construction of $\mathcal {X}_{Kh}^j(L)$ is combinatorial and explicit. We prove that the stable homotopy type of $\mathcal {X}_{Kh}^j(L)$ depends only on the isotopy class of the corresponding link.
DOI : 10.1090/S0894-0347-2014-00785-2

Lipshitz, Robert 1 ; Sarkar, Sucharit 2

1 Department of Mathematics, Columbia University, 2900 Broadway, New York, New York 10027
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_2014_00785_2,
     author = {Lipshitz, Robert and Sarkar, Sucharit},
     title = {A {Khovanov} stable homotopy type},
     journal = {Journal of the American Mathematical Society},
     pages = {983--1042},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00785-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00785-2/}
}
TY  - JOUR
AU  - Lipshitz, Robert
AU  - Sarkar, Sucharit
TI  - A Khovanov stable homotopy type
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 983
EP  - 1042
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00785-2/
DO  - 10.1090/S0894-0347-2014-00785-2
ID  - 10_1090_S0894_0347_2014_00785_2
ER  - 
%0 Journal Article
%A Lipshitz, Robert
%A Sarkar, Sucharit
%T A Khovanov stable homotopy type
%J Journal of the American Mathematical Society
%D 2014
%P 983-1042
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00785-2/
%R 10.1090/S0894-0347-2014-00785-2
%F 10_1090_S0894_0347_2014_00785_2
Lipshitz, Robert; Sarkar, Sucharit. A Khovanov stable homotopy type. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 983-1042. doi: 10.1090/S0894-0347-2014-00785-2

[1] Austin, D. M., Braam, P. J. Morse-Bott theory and equivariant cohomology 1995 123 183

[2] Baldwin, John A. On the spectral sequence from Khovanov homology to Heegaard Floer homology Int. Math. Res. Not. 2010

[3] Bloom, Jonathan M. A link surgery spectral sequence in monopole Floer homology Adv. Math. 2011 3216 3281

[4] Bar-Natan, Dror On Khovanov’s categorification of the Jones polynomial Algebr. Geom. Topol. 2002 337 370

[5] Brzezinski, Tomasz, Wisbauer, Robert Corings and comodules 2003

[6] Cohen, R. L., Jones, J. D. S., Segal, G. B. Floer’s infinite-dimensional Morse theory and homotopy theory 1995 297 325

[7] Cohen, Ralph L. The Floer homotopy type of the cotangent bundle Pure Appl. Math. Q. 2010 391 438

[8] Cornea, Octavian Homotopical dynamics: suspension and duality Ergodic Theory Dynam. Systems 2000 379 391

[9] Everitt, Brent, Lipshitz, Robert, Sarkar, Sucharit, Turner, Paul Khovanov homotopy types and the Dold-Thom functor

[10] Everitt, Brent, Turner, Paul The homotopy theory of Khovanov homology

[11] Franks, John M. Morse-Smale flows and homotopy theory Topology 1979 199 215

[12] Hatcher, Allen Algebraic topology 2002

[13] Hu, Po, Kriz, Daniel, Kriz, Igor Field theories, stable homotopy theory and Khovanov homology

[14] Jã¤Nich, Klaus On the classification of 𝑂(𝑛)-manifolds Math. Ann. 1968 53 76

[15] Khovanov, Mikhail A categorification of the Jones polynomial Duke Math. J. 2000 359 426

[16] Khovanov, Mikhail Patterns in knot cohomology. I Experiment. Math. 2003 365 374

[17] Kronheimer, Peter, Manolescu, Ciprian Periodic Floer pro-spectra from the Seiberg-Witten equations

[18] Kragh, Thomas The Viterbo transfer as a map of spectra

[19] Laures, Gerd On cobordism of manifolds with corners Trans. Amer. Math. Soc. 2000 5667 5688

[20] Lee, Eun Soo An endomorphism of the Khovanov invariant Adv. Math. 2005 554 586

[21] Lipshitz, Robert, Sarkar, Sucharit A refinement of Rasmussen’s s-invariant

[22] Lipshitz, Robert, Sarkar, Sucharit A Steenrod square on Khovanov homology

[23] Manolescu, Ciprian Seiberg-Witten-Floer stable homotopy type of three-manifolds with 𝑏₁ Geom. Topol. 2003 889 932

[24] Manolescu, Ciprian A gluing theorem for the relative Bauer-Furuta invariants J. Differential Geom. 2007 117 153

[25] Manolescu, Ciprian, Ozsvã¡Th, Peter On the Khovanov and knot Floer homologies of quasi-alternating links 2008 60 81

[26] Ozsvã¡Th, Peter, Rasmussen, Jacob, Szabã³, Zoltã¡N Odd Khovanov homology Algebr. Geom. Topol. 2013 1465 1488

[27] Rasmussen, Jacob Knot polynomials and knot homologies 2005 261 280

[28] Rasmussen, Jacob Khovanov homology and the slice genus Invent. Math. 2010 419 447

[29] Seed, Cotton Computations of the Lipshitz-Sarkar Steenrod square on Khovanov homology

[30] Spanier, E. H. Function spaces and duality Ann. of Math. (2) 1959 338 378

[31] Switzer, Robert M. Algebraic topology—homotopy and homology 1975

[32] Ziegler, Gã¼Nter M. Lectures on polytopes 1995

Cité par Sources :