Armstrong, Scott  1 ; Cardaliaguet, Pierre  2 ; Souganidis, Panagiotis  3
@article{10_1090_S0894_0347_2014_00783_9,
author = {Armstrong, Scott and Cardaliaguet, Pierre and Souganidis, Panagiotis},
title = {Error estimates and convergence rates for the stochastic homogenization of {Hamilton-Jacobi} equations},
journal = {Journal of the American Mathematical Society},
pages = {479--540},
year = {2014},
volume = {27},
number = {2},
doi = {10.1090/S0894-0347-2014-00783-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00783-9/}
}
TY - JOUR AU - Armstrong, Scott AU - Cardaliaguet, Pierre AU - Souganidis, Panagiotis TI - Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations JO - Journal of the American Mathematical Society PY - 2014 SP - 479 EP - 540 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00783-9/ DO - 10.1090/S0894-0347-2014-00783-9 ID - 10_1090_S0894_0347_2014_00783_9 ER -
%0 Journal Article %A Armstrong, Scott %A Cardaliaguet, Pierre %A Souganidis, Panagiotis %T Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations %J Journal of the American Mathematical Society %D 2014 %P 479-540 %V 27 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00783-9/ %R 10.1090/S0894-0347-2014-00783-9 %F 10_1090_S0894_0347_2014_00783_9
Armstrong, Scott; Cardaliaguet, Pierre; Souganidis, Panagiotis. Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 479-540. doi: 10.1090/S0894-0347-2014-00783-9
[1] A note on some rates of convergence in first-passage percolation Ann. Appl. Probab. 1993 81 90
[2] , The probabilistic method 2008
[3] , Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments J. Math. Pures Appl. (9) 2012 460 504
[4] , Stochastic homogenization of level-set convex Hamilton-Jacobi equations Int. Math. Res. Not. 2013 3420 3449
[5] Weighted sums of certain dependent random variables Tohoku Math. J. (2) 1967 357 367
[6] Solutions de viscosité des équations de Hamilton-Jacobi 1994
[7] , , First passage percolation has sublinear distance variance Ann. Probab. 2003 1970 1978
[8] , On the rate of convergence in homogenization of Hamilton-Jacobi equations Indiana Univ. Math. J. 2001 1113 1129
[9] , , User’s guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. (N.S.) 1992 1 67
[10] , Metric techniques for convex stationary ergodic Hamiltonians Calc. Var. Partial Differential Equations 2011 391 421
[11] , Weak KAM Theory topics in the stationary ergodic setting Calc. Var. Part. Differ. Eq. in press
[12] The perturbed test function method for viscosity solutions of nonlinear PDE Proc. Roy. Soc. Edinburgh Sect. A 1989 359 375
[13] Periodic homogenisation of certain fully nonlinear partial differential equations Proc. Roy. Soc. Edinburgh Sect. A 1992 245 265
[14] Convex polytopes 2003
[15] Generalization of the fundamental theorem on sub-additive functions Proc. Cambridge Philos. Soc. 1962 235 238
[16] Postulates for subadditive processes Ann. Probability 1974 652 680
[17] Almost periodic homogenization of Hamilton-Jacobi equations 2000 600 605
[18] On the speed of convergence in first-passage percolation Ann. Appl. Probab. 1993 296 338
[19] , , Stochastic homogenization of Hamilton-Jacobi-Bellman equations Comm. Pure Appl. Math. 2006 1489 1521
[20] Generalized solutions of Hamilton-Jacobi equations 1982
[21] , , Homogenization of Hamilton-Jacobi equations 1987
[22] , Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting Comm. Pure Appl. Math. 2003 1501 1524
[23] , Homogenization of “viscous” Hamilton-Jacobi equations in stationary ergodic media Comm. Partial Differential Equations 2005 335 375
[24] , Stochastic homogenization of Hamilton-Jacobi and “viscous”-Hamilton-Jacobi equations with convex nonlinearities—revisited Commun. Math. Sci. 2010 627 637
[25] , , A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations Multiscale Model. Simul. 2011 711 734
[26] , A sublinear variance bound for solutions of a random Hamilton-Jacobi equation
[27] On the method of bounded differences 1989 148 188
[28] Topology: a first course 1975
[29] , , Homogenization of metric Hamilton-Jacobi equations Multiscale Model. Simul. 2009 269 295
[30] Central limit theorem for stochastic Hamilton-Jacobi equations Comm. Math. Phys. 2000 413 438
[31] , Homogenization for stochastic Hamilton-Jacobi equations Arch. Ration. Mech. Anal. 2000 277 309
[32] Stochastic homogenization of Hamilton-Jacobi equations and some applications Asymptot. Anal. 1999 1 11
[33] Distance fluctuations and Lyapounov exponents Ann. Probab. 1996 1507 1530
[34] Brownian motion, obstacles and random media 1998
[35] Concentration of measure and isoperimetric inequalities in product spaces Inst. Hautes Études Sci. Publ. Math. 1995 73 205
[36] Fluctuation results for Brownian motion in a Poissonian potential Ann. Inst. H. Poincaré Probab. Statist. 1998 279 308
[37] On the concentration and the convergence rate with a moment condition in first passage percolation Stochastic Process. Appl. 2010 1317 1341
Cité par Sources :