Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations
Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 479-540

Voir la notice de l'article provenant de la source American Mathematical Society

We present exponential error estimates and demonstrate an algebraic convergence rate for the homogenization of level-set convex Hamilton-Jacobi equations in i.i.d. random environments, the first quantitative homogenization results for these equations in the stochastic setting. By taking advantage of a connection between the metric approach to homogenization and the theory of first-passage percolation, we obtain estimates on the fluctuations of the solutions to the approximate cell problem in the ballistic regime (away from the flat spot of the effective Hamiltonian). In the sub-ballistic regime (on the flat spot), we show that the fluctuations are governed by an entirely different mechanism and the homogenization may proceed, without further assumptions, at an arbitrarily slow rate. We identify a necessary and sufficient condition on the law of the Hamiltonian for an algebraic rate of convergence to hold in the sub-ballistic regime and show, under this hypothesis, that the two rates may be merged to yield comprehensive error estimates and an algebraic rate of convergence for homogenization. Our methods are novel and quite different from the techniques employed in the periodic setting, although we benefit from previous works in both first-passage percolation and homogenization. The link between the rate of homogenization and the flat spot of the effective Hamiltonian, which is related to the nonexistence of correctors, is a purely random phenomenon observed here for the first time.
DOI : 10.1090/S0894-0347-2014-00783-9

Armstrong, Scott 1 ; Cardaliaguet, Pierre 2 ; Souganidis, Panagiotis 3

1 Department of Mathematics, University of Wisconsin, Madison, 480 Lincoln Drive, Madison, Wisconsin 53706
2 Ceremade (UMR CNRS 7534), Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris CEDEX 16, France
3 Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
@article{10_1090_S0894_0347_2014_00783_9,
     author = {Armstrong, Scott and Cardaliaguet, Pierre and Souganidis, Panagiotis},
     title = {Error estimates and convergence rates for the stochastic homogenization of {Hamilton-Jacobi} equations},
     journal = {Journal of the American Mathematical Society},
     pages = {479--540},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00783-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00783-9/}
}
TY  - JOUR
AU  - Armstrong, Scott
AU  - Cardaliaguet, Pierre
AU  - Souganidis, Panagiotis
TI  - Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 479
EP  - 540
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00783-9/
DO  - 10.1090/S0894-0347-2014-00783-9
ID  - 10_1090_S0894_0347_2014_00783_9
ER  - 
%0 Journal Article
%A Armstrong, Scott
%A Cardaliaguet, Pierre
%A Souganidis, Panagiotis
%T Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations
%J Journal of the American Mathematical Society
%D 2014
%P 479-540
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00783-9/
%R 10.1090/S0894-0347-2014-00783-9
%F 10_1090_S0894_0347_2014_00783_9
Armstrong, Scott; Cardaliaguet, Pierre; Souganidis, Panagiotis. Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 479-540. doi: 10.1090/S0894-0347-2014-00783-9

[1] Alexander, Kenneth S. A note on some rates of convergence in first-passage percolation Ann. Appl. Probab. 1993 81 90

[2] Alon, Noga, Spencer, Joel H. The probabilistic method 2008

[3] Armstrong, Scott N., Souganidis, Panagiotis E. Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments J. Math. Pures Appl. (9) 2012 460 504

[4] S. N. Armstrong, P. E. Souganidis Stochastic homogenization of level-set convex Hamilton-Jacobi equations Int. Math. Res. Not. 2013 3420 3449

[5] Azuma, Kazuoki Weighted sums of certain dependent random variables Tohoku Math. J. (2) 1967 357 367

[6] Barles, Guy Solutions de viscosité des équations de Hamilton-Jacobi 1994

[7] Benjamini, Itai, Kalai, Gil, Schramm, Oded First passage percolation has sublinear distance variance Ann. Probab. 2003 1970 1978

[8] Capuzzo-Dolcetta, I., Ishii, H. On the rate of convergence in homogenization of Hamilton-Jacobi equations Indiana Univ. Math. J. 2001 1113 1129

[9] Crandall, Michael G., Ishii, Hitoshi, Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. (N.S.) 1992 1 67

[10] Davini, Andrea, Siconolfi, Antonio Metric techniques for convex stationary ergodic Hamiltonians Calc. Var. Partial Differential Equations 2011 391 421

[11] Davini, A., Siconolfi, A. Weak KAM Theory topics in the stationary ergodic setting Calc. Var. Part. Differ. Eq. in press

[12] Evans, Lawrence C. The perturbed test function method for viscosity solutions of nonlinear PDE Proc. Roy. Soc. Edinburgh Sect. A 1989 359 375

[13] Evans, Lawrence C. Periodic homogenisation of certain fully nonlinear partial differential equations Proc. Roy. Soc. Edinburgh Sect. A 1992 245 265

[14] Grã¼Nbaum, Branko Convex polytopes 2003

[15] Hammersley, J. M. Generalization of the fundamental theorem on sub-additive functions Proc. Cambridge Philos. Soc. 1962 235 238

[16] Hammersley, J. M. Postulates for subadditive processes Ann. Probability 1974 652 680

[17] Ishii, Hitoshi Almost periodic homogenization of Hamilton-Jacobi equations 2000 600 605

[18] Kesten, Harry On the speed of convergence in first-passage percolation Ann. Appl. Probab. 1993 296 338

[19] Kosygina, Elena, Rezakhanlou, Fraydoun, Varadhan, S. R. S. Stochastic homogenization of Hamilton-Jacobi-Bellman equations Comm. Pure Appl. Math. 2006 1489 1521

[20] Lions, Pierre-Louis Generalized solutions of Hamilton-Jacobi equations 1982

[21] Lions, P.-L., Papanicolaou, G. C., Varadhan, S. R. S. Homogenization of Hamilton-Jacobi equations 1987

[22] Lions, Pierre-Louis, Souganidis, Panagiotis E. Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting Comm. Pure Appl. Math. 2003 1501 1524

[23] Lions, Pierre-Louis, Souganidis, Panagiotis E. Homogenization of “viscous” Hamilton-Jacobi equations in stationary ergodic media Comm. Partial Differential Equations 2005 335 375

[24] Lions, Pierre-Louis, Souganidis, Panagiotis E. Stochastic homogenization of Hamilton-Jacobi and “viscous”-Hamilton-Jacobi equations with convex nonlinearities—revisited Commun. Math. Sci. 2010 627 637

[25] Luo, Songting, Yu, Yifeng, Zhao, Hongkai A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations Multiscale Model. Simul. 2011 711 734

[26] Matic, I., Nolen, J. A sublinear variance bound for solutions of a random Hamilton-Jacobi equation

[27] Mcdiarmid, Colin On the method of bounded differences 1989 148 188

[28] Munkres, James R. Topology: a first course 1975

[29] Oberman, Adam M., Takei, Ryo, Vladimirsky, Alexander Homogenization of metric Hamilton-Jacobi equations Multiscale Model. Simul. 2009 269 295

[30] Rezakhanlou, Fraydoun Central limit theorem for stochastic Hamilton-Jacobi equations Comm. Math. Phys. 2000 413 438

[31] Rezakhanlou, Fraydoun, Tarver, James E. Homogenization for stochastic Hamilton-Jacobi equations Arch. Ration. Mech. Anal. 2000 277 309

[32] Souganidis, Panagiotis E. Stochastic homogenization of Hamilton-Jacobi equations and some applications Asymptot. Anal. 1999 1 11

[33] Sznitman, Alain-Sol Distance fluctuations and Lyapounov exponents Ann. Probab. 1996 1507 1530

[34] Sznitman, Alain-Sol Brownian motion, obstacles and random media 1998

[35] Talagrand, Michel Concentration of measure and isoperimetric inequalities in product spaces Inst. Hautes Études Sci. Publ. Math. 1995 73 205

[36] Wã¼Thrich, Mario V. Fluctuation results for Brownian motion in a Poissonian potential Ann. Inst. H. Poincaré Probab. Statist. 1998 279 308

[37] Zhang, Yu On the concentration and the convergence rate with a moment condition in first passage percolation Stochastic Process. Appl. 2010 1317 1341

Cité par Sources :