The Farrell-Jones Conjecture for cocompact lattices in virtually connected Lie groups
Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 339-388 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $G$ be a cocompact lattice in a virtually connected Lie group or the fundamental group of a three-dimensional manifold. We prove the $K$- and $L$-theoretic Farrell-Jones Conjectures for $G$.
DOI : 10.1090/S0894-0347-2014-00782-7

Bartels, A.  1   ; Farrell, F.  2   ; Lück, W.  3

1 Westfälische Wilhelms-Universität Münster, Mathematicians Institut,Einsteinium. 62, D-48149 Münster, Germany
2 Department of Mathematics, Suny, Binghamton, New York, New York 13902
3 Mathematicians Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{10_1090_S0894_0347_2014_00782_7,
     author = {Bartels, A. and Farrell, F. and L\"uck, W.},
     title = {The {Farrell-Jones} {Conjecture} for cocompact lattices in virtually connected {Lie} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {339--388},
     year = {2014},
     volume = {27},
     number = {2},
     doi = {10.1090/S0894-0347-2014-00782-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00782-7/}
}
TY  - JOUR
AU  - Bartels, A.
AU  - Farrell, F.
AU  - Lück, W.
TI  - The Farrell-Jones Conjecture for cocompact lattices in virtually connected Lie groups
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 339
EP  - 388
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00782-7/
DO  - 10.1090/S0894-0347-2014-00782-7
ID  - 10_1090_S0894_0347_2014_00782_7
ER  - 
%0 Journal Article
%A Bartels, A.
%A Farrell, F.
%A Lück, W.
%T The Farrell-Jones Conjecture for cocompact lattices in virtually connected Lie groups
%J Journal of the American Mathematical Society
%D 2014
%P 339-388
%V 27
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00782-7/
%R 10.1090/S0894-0347-2014-00782-7
%F 10_1090_S0894_0347_2014_00782_7
Bartels, A.; Farrell, F.; Lück, W. The Farrell-Jones Conjecture for cocompact lattices in virtually connected Lie groups. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 339-388. doi: 10.1090/S0894-0347-2014-00782-7

[1] Abels, Herbert Parallelizability of proper actions, global 𝐾-slices and maximal compact subgroups Math. Ann. 1974/75 1 19

[2] Bartels, Arthur, Echterhoff, Siegfried, Lück, Wolfgang Inheritance of isomorphism conjectures under colimits 2008 41 70

[3] Bartels, Arthur, Lück, Wolfgang Isomorphism conjecture for homotopy 𝐾-theory and groups acting on trees J. Pure Appl. Algebra 2006 660 696

[4] Bartels, Arthur, Lück, Wolfgang Induction theorems and isomorphism conjectures for 𝐾- and 𝐿-theory Forum Math. 2007 379 406

[5] Bartels, Arthur, Lück, Wolfgang On crossed product rings with twisted involutions, their module categories and 𝐿-theory 2010 1 54

[6] Bartels, Arthur, Lück, Wolfgang The Borel conjecture for hyperbolic and 𝐶𝐴𝑇(0)-groups Ann. of Math. (2) 2012 631 689

[7] Bartels, A., Lück, W. The Farrell-Hsiang method revisited Math. Ann. 2012 209 226

[8] Bartels, Arthur, Lück, Wolfgang, Reich, Holger Equivariant covers for hyperbolic groups Geom. Topol. 2008 1799 1882

[9] Bartels, Arthur, Lück, Wolfgang, Reich, Holger The 𝐾-theoretic Farrell-Jones conjecture for hyperbolic groups Invent. Math. 2008 29 70

[10] Bartels, Arthur, Lück, Wolfgang, Reich, Holger On the Farrell-Jones conjecture and its applications J. Topol. 2008 57 86

[11] Bartels, A., Lück, W., Weinberger, S. On hyperbolic groups with spheres as boundary. arXiv:0911.3725v1 [math.GT], to appear in the Journal of Differential Geometry 2009

[12] Bartels, Arthur, Reich, Holger Coefficients for the Farrell-Jones conjecture Adv. Math. 2007 337 362

[13] Bridson, Martin R., Haefliger, André Metric spaces of non-positive curvature 1999

[14] Brown, Kenneth S. Cohomology of groups 1982

[15] Bryant, J., Ferry, S., Mio, W., Weinberger, S. Topology of homology manifolds Ann. of Math. (2) 1996 435 467

[16] Connolly, Frank, Koźniewski, Tadeusz Rigidity and crystallographic groups. I Invent. Math. 1990 25 48

[17] Davis, James F., Khan, Qayum, Ranicki, Andrew Algebraic 𝐾-theory over the infinite dihedral group: an algebraic approach Algebr. Geom. Topol. 2011 2391 2436

[18] Davis, James F., Quinn, Frank, Reich, Holger Algebraic 𝐾-theory over the infinite dihedral group: a controlled topology approach J. Topol. 2011 505 528

[19] Eberlein, Patrick B. Geometry of nonpositively curved manifolds 1996

[20] Farrell, F. T., Hsiang, W. C. The Whitehead group of poly-(finite or cyclic) groups J. London Math. Soc. (2) 1981 308 324

[21] Farrell, F. T., Hsiang, W. C. Topological characterization of flat and almost flat Riemannian manifolds 𝑀ⁿ (𝑛̸ Amer. J. Math. 1983 641 672

[22] Farrell, F. T., Jones, L. E. The surgery 𝐿-groups of poly-(finite or cyclic) groups Invent. Math. 1988 559 586

[23] Farrell, F. T., Jones, L. E. Isomorphism conjectures in algebraic 𝐾-theory J. Amer. Math. Soc. 1993 249 297

[24] Hambleton, I., Pedersen, E. K., Rosenthal, D. Assembly maps for group extensions in 𝐾- and 𝐿-theory. Preprint, arXiv:math.KT/0709.0437v1, to appear in Pure and Applied Mathematics Quarterly 2007

[25] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 1978

[26] Higson, Nigel, Kasparov, Gennadi 𝐸-theory and 𝐾𝐾-theory for groups which act properly and isometrically on Hilbert space Invent. Math. 2001 23 74

[27] Kühl, P. Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, arXiv:0907.0729v1 [math.KT] 2009

[28] Lück, Wolfgang 𝐾- and 𝐿-theory of the semi-direct product of the discrete 3-dimensional Heisenberg group by ℤ/4 Geom. Topol. 2005 1639 1676

[29] Lück, Wolfgang Survey on classifying spaces for families of subgroups 2005 269 322

[30] Lück, W., Reich, H. The Baum-Connes and the Farrell-Jones conjectures in 𝐾- and 𝐿-theory 2005 703 842

[31] Quinn, Frank An obstruction to the resolution of homology manifolds Michigan Math. J. 1987 285 291

[32] Quinn, Frank Algebraic 𝐾-theory over virtually abelian groups J. Pure Appl. Algebra 2012 170 183

[33] Quinn, Frank Controlled K-theory I: Basic theory Pure Appl. Math. Q. 2012 329 421

[34] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[35] Roushon, S. K. The Farrell-Jones isomorphism conjecture for 3-manifold groups J. K-Theory 2008 49 82

[36] Roushon, Sayed K. The isomorphism conjecture for 3-manifold groups and 𝐾-theory of virtually poly-surface groups J. K-Theory 2008 83 93

[37] Serre, J.-P. A course in arithmetic 1973

[38] Lie groups and Lie algebras. II 2000

[39] Wegner, Christian The 𝐾-theoretic Farrell-Jones conjecture for CAT(0)-groups Proc. Amer. Math. Soc. 2012 779 793

Cité par Sources :