The Centro-Affine Hadwiger Theorem
Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 685-705

Voir la notice de l'article provenant de la source American Mathematical Society

All upper semicontinuous and $\mathrm {SL}(n)$ invariant valuations on convex bodies containing the origin in their interiors are completely classified. Each such valuation is shown to be a linear combination of the Euler characteristic, the volume, the volume of the polar body, and the recently discovered Orlicz surface areas.
DOI : 10.1090/S0894-0347-2014-00781-5

Haberl, Christoph 1 ; Parapatits, Lukas 1

1 Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
@article{10_1090_S0894_0347_2014_00781_5,
     author = {Haberl, Christoph and Parapatits, Lukas},
     title = {The {Centro-Affine} {Hadwiger} {Theorem}},
     journal = {Journal of the American Mathematical Society},
     pages = {685--705},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00781-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00781-5/}
}
TY  - JOUR
AU  - Haberl, Christoph
AU  - Parapatits, Lukas
TI  - The Centro-Affine Hadwiger Theorem
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 685
EP  - 705
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00781-5/
DO  - 10.1090/S0894-0347-2014-00781-5
ID  - 10_1090_S0894_0347_2014_00781_5
ER  - 
%0 Journal Article
%A Haberl, Christoph
%A Parapatits, Lukas
%T The Centro-Affine Hadwiger Theorem
%J Journal of the American Mathematical Society
%D 2014
%P 685-705
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00781-5/
%R 10.1090/S0894-0347-2014-00781-5
%F 10_1090_S0894_0347_2014_00781_5
Haberl, Christoph; Parapatits, Lukas. The Centro-Affine Hadwiger Theorem. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 685-705. doi: 10.1090/S0894-0347-2014-00781-5

[1] Abardia, Judit, Bernig, Andreas Projection bodies in complex vector spaces Adv. Math. 2011 830 846

[2] Alesker, S. Continuous rotation invariant valuations on convex sets Ann. of Math. (2) 1999 977 1005

[3] Alesker, S. Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture Geom. Funct. Anal. 2001 244 272

[4] Alesker, Semyon Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations J. Differential Geom. 2003 63 95

[5] Alesker, Semyon Theory of valuations on manifolds: a survey Geom. Funct. Anal. 2007 1321 1341

[6] Alesker, Semyon Valuations on manifolds and integral geometry Geom. Funct. Anal. 2010 1073 1143

[7] Alesker, Semyon, Bernig, Andreas, Schuster, Franz E. Harmonic analysis of translation invariant valuations Geom. Funct. Anal. 2011 751 773

[8] Andrews, Ben Contraction of convex hypersurfaces by their affine normal J. Differential Geom. 1996 207 230

[9] Bernig, Andreas Valuations with Crofton formula and Finsler geometry Adv. Math. 2007 733 753

[10] Bernig, Andreas A Hadwiger-type theorem for the special unitary group Geom. Funct. Anal. 2009 356 372

[11] Bernig, Andreas, Brã¶Cker, Ludwig Valuations on manifolds and Rumin cohomology J. Differential Geom. 2007 433 457

[12] Bernig, Andreas, Fu, Joseph H. G. Hermitian integral geometry Ann. of Math. (2) 2011 907 945

[13] Bã¶Rã¶Czky, Kã¡Roly J., Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong The logarithmic Minkowski problem J. Amer. Math. Soc. 2013 831 852

[14] Campi, S., Gronchi, P. The 𝐿^{𝑝}-Busemann-Petty centroid inequality Adv. Math. 2002 128 141

[15] Chou, Kai-Seng, Wang, Xu-Jia The 𝐿_{𝑝}-Minkowski problem and the Minkowski problem in centroaffine geometry Adv. Math. 2006 33 83

[16] Cianchi, Andrea, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Affine Moser-Trudinger and Morrey-Sobolev inequalities Calc. Var. Partial Differential Equations 2009 419 436

[17] Fu, Joseph H. G. Structure of the unitary valuation algebra J. Differential Geom. 2006 509 533

[18] Gardner, Richard J. Geometric tomography 2006

[19] Gardner, R. J., Giannopoulos, A. A. 𝑝-cross-section bodies Indiana Univ. Math. J. 1999 593 613

[20] Gardner, R. J., Zhang, Gaoyong Affine inequalities and radial mean bodies Amer. J. Math. 1998 505 528

[21] Gruber, Peter M. Convex and discrete geometry 2007

[22] Gruber, Peter M. Aspects of approximation of convex bodies 1993 319 345

[23] Haberl, Christoph Minkowski valuations intertwining with the special linear group J. Eur. Math. Soc. (JEMS) 2012 1565 1597

[24] Haberl, Christoph Star body valued valuations Indiana Univ. Math. J. 2009 2253 2276

[25] Haberl, Christoph Blaschke valuations Amer. J. Math. 2011 717 751

[26] Haberl, Christoph, Ludwig, Monika A characterization of 𝐿_{𝑝} intersection bodies Int. Math. Res. Not. 2006

[27] Haberl, Christoph, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong The even Orlicz Minkowski problem Adv. Math. 2010 2485 2510

[28] Haberl, Christoph, Schuster, Franz E. Asymmetric affine 𝐿_{𝑝} Sobolev inequalities J. Funct. Anal. 2009 641 658

[29] Haberl, Christoph, Schuster, Franz E. General 𝐿_{𝑝} affine isoperimetric inequalities J. Differential Geom. 2009 1 26

[30] Haberl, Christoph, Schuster, Franz E., Xiao, Jie An asymmetric affine Pólya-Szegö principle Math. Ann. 2012 517 542

[31] Hadwiger, H. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie 1957

[32] Klain, Daniel A. Star valuations and dual mixed volumes Adv. Math. 1996 80 101

[33] Klain, Daniel A. Invariant valuations on star-shaped sets Adv. Math. 1997 95 113

[34] Klain, Daniel A., Rota, Gian-Carlo Introduction to geometric probability 1997

[35] Ludwig, Monika Valuations on Sobolev spaces Amer. J. Math. 2012 827 842

[36] Ludwig, Monika Moment vectors of polytopes Rend. Circ. Mat. Palermo (2) Suppl. 2002 123 138

[37] Ludwig, Monika Projection bodies and valuations Adv. Math. 2002 158 168

[38] Ludwig, Monika Valuations of polytopes containing the origin in their interiors Adv. Math. 2002 239 256

[39] Ludwig, Monika Ellipsoids and matrix-valued valuations Duke Math. J. 2003 159 188

[40] Ludwig, Monika Minkowski valuations Trans. Amer. Math. Soc. 2005 4191 4213

[41] Ludwig, Monika Intersection bodies and valuations Amer. J. Math. 2006 1409 1428

[42] Ludwig, Monika General affine surface areas Adv. Math. 2010 2346 2360

[43] Ludwig, Monika Minkowski areas and valuations J. Differential Geom. 2010 133 161

[44] Ludwig, Monika Fisher information and matrix-valued valuations Adv. Math. 2011 2700 2711

[45] Ludwig, Monika, Reitzner, Matthias A characterization of affine surface area Adv. Math. 1999 138 172

[46] Ludwig, Monika, Reitzner, Matthias Elementary moves on triangulations Discrete Comput. Geom. 2006 527 536

[47] Ludwig, Monika, Reitzner, Matthias A classification of 𝑆𝐿(𝑛) invariant valuations Ann. of Math. (2) 2010 1219 1267

[48] Lutwak, Erwin Extended affine surface area Adv. Math. 1991 39 68

[49] Lutwak, Erwin The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem J. Differential Geom. 1993 131 150

[50] Lutwak, Erwin The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas Adv. Math. 1996 244 294

[51] Lutwak, Erwin, Lv, Songjun, Yang, Deane, Zhang, Gaoyong Extensions of Fisher information and Stam’s inequality IEEE Trans. Inform. Theory 2012 1319 1327

[52] Lutwak, Erwin, Oliker, Vladimir On the regularity of solutions to a generalization of the Minkowski problem J. Differential Geom. 1995 227 246

[53] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong 𝐿_{𝑝} affine isoperimetric inequalities J. Differential Geom. 2000 111 132

[54] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong A new ellipsoid associated with convex bodies Duke Math. J. 2000 375 390

[55] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Sharp affine 𝐿_{𝑝} Sobolev inequalities J. Differential Geom. 2002 17 38

[56] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Optimal Sobolev norms and the 𝐿^{𝑝} Minkowski problem Int. Math. Res. Not. 2006

[57] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Orlicz centroid bodies J. Differential Geom. 2010 365 387

[58] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Orlicz projection bodies Adv. Math. 2010 220 242

[59] Lutwak, Erwin, Zhang, Gaoyong Blaschke-Santaló inequalities J. Differential Geom. 1997 1 16

[60] Mcmullen, P. Valuations and Euler-type relations on certain classes of convex polytopes Proc. London Math. Soc. (3) 1977 113 135

[61] Parapatits, L. SL(𝑛)-contravariant 𝐿_{𝑝}-Minkowski valuations Trans. Amer. Math. Soc.

[62] Parapatits, Lukas, Schuster, Franz E. The Steiner formula for Minkowski valuations Adv. Math. 2012 978 994

[63] Ryabogin, D., Zvavitch, A. The Fourier transform and Firey projections of convex bodies Indiana Univ. Math. J. 2004 667 682

[64] Sapiro, Guillermo Geometric partial differential equations and image analysis 2006

[65] Schneider, Rolf Convex bodies: the Brunn-Minkowski theory 1993

[66] Schuster, Franz E. Valuations and Busemann-Petty type problems Adv. Math. 2008 344 368

[67] Schuster, Franz E. Crofton measures and Minkowski valuations Duke Math. J. 2010 1 30

[68] Schuster, Franz E., Wannerer, Thomas 𝐺𝐿(𝑛) contravariant Minkowski valuations Trans. Amer. Math. Soc. 2012 815 826

[69] Schã¼Tt, Carsten, Werner, Elisabeth Surface bodies and 𝑝-affine surface area Adv. Math. 2004 98 145

[70] Stancu, Alina The discrete planar 𝐿₀-Minkowski problem Adv. Math. 2002 160 174

[71] Stancu, Alina On the number of solutions to the discrete two-dimensional 𝐿₀-Minkowski problem Adv. Math. 2003 290 323

[72] Trudinger, Neil S., Wang, Xu-Jia The affine Plateau problem J. Amer. Math. Soc. 2005 253 289

[73] Werner, Elisabeth On 𝐿_{𝑝}-affine surface areas Indiana Univ. Math. J. 2007 2305 2323

[74] Werner, Elisabeth, Ye, Deping New 𝐿_{𝑝} affine isoperimetric inequalities Adv. Math. 2008 762 780

[75] Werner, Elisabeth, Ye, Deping Inequalities for mixed 𝑝-affine surface area Math. Ann. 2010 703 737

[76] Yaskin, V., Yaskina, M. Centroid bodies and comparison of volumes Indiana Univ. Math. J. 2006 1175 1194

Cité par Sources :