Voir la notice de l'article provenant de la source American Mathematical Society
Haberl, Christoph 1 ; Parapatits, Lukas 1
@article{10_1090_S0894_0347_2014_00781_5,
     author = {Haberl, Christoph and Parapatits, Lukas},
     title = {The {Centro-Affine} {Hadwiger} {Theorem}},
     journal = {Journal of the American Mathematical Society},
     pages = {685--705},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00781-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00781-5/}
}
                      
                      
                    TY - JOUR AU - Haberl, Christoph AU - Parapatits, Lukas TI - The Centro-Affine Hadwiger Theorem JO - Journal of the American Mathematical Society PY - 2014 SP - 685 EP - 705 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00781-5/ DO - 10.1090/S0894-0347-2014-00781-5 ID - 10_1090_S0894_0347_2014_00781_5 ER -
%0 Journal Article %A Haberl, Christoph %A Parapatits, Lukas %T The Centro-Affine Hadwiger Theorem %J Journal of the American Mathematical Society %D 2014 %P 685-705 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00781-5/ %R 10.1090/S0894-0347-2014-00781-5 %F 10_1090_S0894_0347_2014_00781_5
Haberl, Christoph; Parapatits, Lukas. The Centro-Affine Hadwiger Theorem. Journal of the American Mathematical Society, Tome 27 (2014) no. 3, pp. 685-705. doi: 10.1090/S0894-0347-2014-00781-5
[1] , Projection bodies in complex vector spaces Adv. Math. 2011 830 846
[2] Continuous rotation invariant valuations on convex sets Ann. of Math. (2) 1999 977 1005
[3] Description of translation invariant valuations on convex sets with solution of P. McMullenâs conjecture Geom. Funct. Anal. 2001 244 272
[4] Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations J. Differential Geom. 2003 63 95
[5] Theory of valuations on manifolds: a survey Geom. Funct. Anal. 2007 1321 1341
[6] Valuations on manifolds and integral geometry Geom. Funct. Anal. 2010 1073 1143
[7] , , Harmonic analysis of translation invariant valuations Geom. Funct. Anal. 2011 751 773
[8] Contraction of convex hypersurfaces by their affine normal J. Differential Geom. 1996 207 230
[9] Valuations with Crofton formula and Finsler geometry Adv. Math. 2007 733 753
[10] A Hadwiger-type theorem for the special unitary group Geom. Funct. Anal. 2009 356 372
[11] , Valuations on manifolds and Rumin cohomology J. Differential Geom. 2007 433 457
[12] , Hermitian integral geometry Ann. of Math. (2) 2011 907 945
[13] , , , The logarithmic Minkowski problem J. Amer. Math. Soc. 2013 831 852
[14] , The ð¿^{ð}-Busemann-Petty centroid inequality Adv. Math. 2002 128 141
[15] , The ð¿_{ð}-Minkowski problem and the Minkowski problem in centroaffine geometry Adv. Math. 2006 33 83
[16] , , , Affine Moser-Trudinger and Morrey-Sobolev inequalities Calc. Var. Partial Differential Equations 2009 419 436
[17] Structure of the unitary valuation algebra J. Differential Geom. 2006 509 533
[18] Geometric tomography 2006
[19] , ð-cross-section bodies Indiana Univ. Math. J. 1999 593 613
[20] , Affine inequalities and radial mean bodies Amer. J. Math. 1998 505 528
[21] Convex and discrete geometry 2007
[22] Aspects of approximation of convex bodies 1993 319 345
[23] Minkowski valuations intertwining with the special linear group J. Eur. Math. Soc. (JEMS) 2012 1565 1597
[24] Star body valued valuations Indiana Univ. Math. J. 2009 2253 2276
[25] Blaschke valuations Amer. J. Math. 2011 717 751
[26] , A characterization of ð¿_{ð} intersection bodies Int. Math. Res. Not. 2006
[27] , , , The even Orlicz Minkowski problem Adv. Math. 2010 2485 2510
[28] , Asymmetric affine ð¿_{ð} Sobolev inequalities J. Funct. Anal. 2009 641 658
[29] , General ð¿_{ð} affine isoperimetric inequalities J. Differential Geom. 2009 1 26
[30] , , An asymmetric affine Pólya-Szegö principle Math. Ann. 2012 517 542
[31] Vorlesungen über Inhalt, Oberfläche und Isoperimetrie 1957
[32] Star valuations and dual mixed volumes Adv. Math. 1996 80 101
[33] Invariant valuations on star-shaped sets Adv. Math. 1997 95 113
[34] , Introduction to geometric probability 1997
[35] Valuations on Sobolev spaces Amer. J. Math. 2012 827 842
[36] Moment vectors of polytopes Rend. Circ. Mat. Palermo (2) Suppl. 2002 123 138
[37] Projection bodies and valuations Adv. Math. 2002 158 168
[38] Valuations of polytopes containing the origin in their interiors Adv. Math. 2002 239 256
[39] Ellipsoids and matrix-valued valuations Duke Math. J. 2003 159 188
[40] Minkowski valuations Trans. Amer. Math. Soc. 2005 4191 4213
[41] Intersection bodies and valuations Amer. J. Math. 2006 1409 1428
[42] General affine surface areas Adv. Math. 2010 2346 2360
[43] Minkowski areas and valuations J. Differential Geom. 2010 133 161
[44] Fisher information and matrix-valued valuations Adv. Math. 2011 2700 2711
[45] , A characterization of affine surface area Adv. Math. 1999 138 172
[46] , Elementary moves on triangulations Discrete Comput. Geom. 2006 527 536
[47] , A classification of ðð¿(ð) invariant valuations Ann. of Math. (2) 2010 1219 1267
[48] Extended affine surface area Adv. Math. 1991 39 68
[49] The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem J. Differential Geom. 1993 131 150
[50] The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas Adv. Math. 1996 244 294
[51] , , , Extensions of Fisher information and Stamâs inequality IEEE Trans. Inform. Theory 2012 1319 1327
[52] , On the regularity of solutions to a generalization of the Minkowski problem J. Differential Geom. 1995 227 246
[53] , , ð¿_{ð} affine isoperimetric inequalities J. Differential Geom. 2000 111 132
[54] , , A new ellipsoid associated with convex bodies Duke Math. J. 2000 375 390
[55] , , Sharp affine ð¿_{ð} Sobolev inequalities J. Differential Geom. 2002 17 38
[56] , , Optimal Sobolev norms and the ð¿^{ð} Minkowski problem Int. Math. Res. Not. 2006
[57] , , Orlicz centroid bodies J. Differential Geom. 2010 365 387
[58] , , Orlicz projection bodies Adv. Math. 2010 220 242
[59] , Blaschke-Santaló inequalities J. Differential Geom. 1997 1 16
[60] Valuations and Euler-type relations on certain classes of convex polytopes Proc. London Math. Soc. (3) 1977 113 135
[61] SL(ð)-contravariant ð¿_{ð}-Minkowski valuations Trans. Amer. Math. Soc.
[62] , The Steiner formula for Minkowski valuations Adv. Math. 2012 978 994
[63] , The Fourier transform and Firey projections of convex bodies Indiana Univ. Math. J. 2004 667 682
[64] Geometric partial differential equations and image analysis 2006
[65] Convex bodies: the Brunn-Minkowski theory 1993
[66] Valuations and Busemann-Petty type problems Adv. Math. 2008 344 368
[67] Crofton measures and Minkowski valuations Duke Math. J. 2010 1 30
[68] , ðºð¿(ð) contravariant Minkowski valuations Trans. Amer. Math. Soc. 2012 815 826
[69] , Surface bodies and ð-affine surface area Adv. Math. 2004 98 145
[70] The discrete planar ð¿â-Minkowski problem Adv. Math. 2002 160 174
[71] On the number of solutions to the discrete two-dimensional ð¿â-Minkowski problem Adv. Math. 2003 290 323
[72] , The affine Plateau problem J. Amer. Math. Soc. 2005 253 289
[73] On ð¿_{ð}-affine surface areas Indiana Univ. Math. J. 2007 2305 2323
[74] , New ð¿_{ð} affine isoperimetric inequalities Adv. Math. 2008 762 780
[75] , Inequalities for mixed ð-affine surface area Math. Ann. 2010 703 737
[76] , Centroid bodies and comparison of volumes Indiana Univ. Math. J. 2006 1175 1194
Cité par Sources :
