Voir la notice de l'article provenant de la source American Mathematical Society
Reeder, Mark 1 ; Yu, Jiu-Kang 2
@article{10_1090_S0894_0347_2013_00780_8,
     author = {Reeder, Mark and Yu, Jiu-Kang},
     title = {Epipelagic representations and invariant theory},
     journal = {Journal of the American Mathematical Society},
     pages = {437--477},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00780-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00780-8/}
}
                      
                      
                    TY - JOUR AU - Reeder, Mark AU - Yu, Jiu-Kang TI - Epipelagic representations and invariant theory JO - Journal of the American Mathematical Society PY - 2014 SP - 437 EP - 477 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00780-8/ DO - 10.1090/S0894-0347-2013-00780-8 ID - 10_1090_S0894_0347_2013_00780_8 ER -
%0 Journal Article %A Reeder, Mark %A Yu, Jiu-Kang %T Epipelagic representations and invariant theory %J Journal of the American Mathematical Society %D 2014 %P 437-477 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00780-8/ %R 10.1090/S0894-0347-2013-00780-8 %F 10_1090_S0894_0347_2013_00780_8
Reeder, Mark; Yu, Jiu-Kang. Epipelagic representations and invariant theory. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 437-477. doi: 10.1090/S0894-0347-2013-00780-8
[1] Refined anisotropic ð¾-types and supercuspidal representations Pacific J. Math. 1998 1 32
[2] , Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive ð-adic group Michigan Math. J. 2002 263 286
[3] Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes Tohoku Math. J. (2) 1961 216 240
[4] , Sur certains sous-groupes des groupes de Lie compacts Comment. Math. Helv. 1953 128 139
[5] Lie groups and Lie algebras. Chapters 4â6 2002
[6] , Groupes réductifs sur un corps local Inst. Hautes Ãtudes Sci. Publ. Math. 1972 5 251
[7] , Groupes réductifs sur un corps local. II. Schémas en groupes. Existence dâune donnée radicielle valuée Inst. Hautes Ãtudes Sci. Publ. Math. 1984 197 376
[8] , The local Langlands conjecture for ðºð¿(2) 2006
[9] Représentations supercuspidales de ðºð¿_{ð} C. R. Acad. Sci. Paris Sér. A-B 1979
[10] Parametrizing nilpotent orbits via Bruhat-Tits theory Ann. of Math. (2) 2002 295 332
[11] , Endoscopic lifts from ððºð¿â to ðºâ Compos. Math. 2004 793 808
[12] Irreducible cuspidal representations with prescribed local behavior Amer. J. Math. 2011 1231 1258
[13] , Arithmetic invariants of discrete Langlands parameters Duke Math. J. 2010 431 508
[14] , The dual pair ððºð¿âÃðºâ Canad. Math. Bull. 1997 376 384
[15] , , Kloosterman sheaves for reductive groups Ann. of Math. (2) 2013 241 310
[16] , , Formal degrees and adjoint ð¾-factors J. Amer. Math. Soc. 2008 283 304
[17] , , Functoriality and the inverse Galois problem. II. Groups of type ðµ_{ð} and ðºâ Ann. Fac. Sci. Toulouse Math. (6) 2010 37 70
[18] Supercuspidal representations: an exhaustion theorem J. Amer. Math. Soc. 2007 273 320
[19] , Modular ð¿-values of cubic level Pacific J. Math. 2012 527 563
[20] , Orthogonal decompositions and integral lattices 1994
[21] Mackeyâs theorem for nonunitary representations Proc. Amer. Math. Soc. 1977 173 175
[22] Vinbergâs ð-groups in positive characteristic and Kostant-Weierstrass slices Transform. Groups 2009 417 461
[23] Some examples of square integrable representations of semisimple ð-adic groups Trans. Amer. Math. Soc. 1983 623 653
[24] , Unrefined minimal ð¾-types for ð-adic groups Invent. Math. 1994 393 408
[25] , Jacquet functors and unrefined minimal ð¾-types Comment. Math. Helv. 1996 98 121
[26] Stability of projective varieties Enseign. Math. (2) 1977 39 110
[27] On the Iwahori-spherical discrete series for ð-adic Chevalley groups Ann. Sci. Ãcole Norm. Sup. (4) 1994 463 491
[28] Torsion automorphisms of simple Lie algebras Enseign. Math. (2) 2010 3 47
[29] Elliptic centralizers in Weyl groups and their coinvariant representations Represent. Theory 2011 63 111
[30] , , , Gradings of positive rank on simple Lie algebras Transform. Groups 2012 1123 1190
[31] Regular elements of finite reflection groups Invent. Math. 1974 159 198
[32] Torsion in reductive groups Advances in Math. 1975 63 92
[33] Reductive groups over local fields 1979 29 69
[34] The Weyl group of a graded Lie algebra Izv. Akad. Nauk SSSR Ser. Mat. 1976
[35] Construction of tame supercuspidal representations J. Amer. Math. Soc. 2001 579 622
Cité par Sources :
