Epipelagic representations and invariant theory
Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 437-477

Voir la notice de l'article provenant de la source American Mathematical Society

We introduce a new approach to the representation theory of reductive $p$-adic groups $G$, based on the geometric invariant theory (GIT) of Moy-Prasad quotients. Stable functionals on these quotients are used to give a new construction of supercuspidal representations of $G$ having small positive depth, called epipelagic. With some restrictions on $p$, we classify the stable and semistable functionals on Moy-Prasad quotients. The latter classification determines the nondegenerate $K$-types for $G$ as well as the depths of irreducible representations of $G$. The main step is an equivalence between Moy-Prasad theory and the theory of graded Lie algebras, whose GIT was analyzed by Vinberg and Levy. Our classification shows that stable functionals arise from $\mathbb {Z}$-regular elliptic automorphisms of the absolute root system of $G$. These automorphisms also appear in the Langlands parameters of epipelagic representations, in accordance with the conjectural local Langlands correspondence.
DOI : 10.1090/S0894-0347-2013-00780-8

Reeder, Mark 1 ; Yu, Jiu-Kang 2

1 Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
2 The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
@article{10_1090_S0894_0347_2013_00780_8,
     author = {Reeder, Mark and Yu, Jiu-Kang},
     title = {Epipelagic representations and invariant theory},
     journal = {Journal of the American Mathematical Society},
     pages = {437--477},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00780-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00780-8/}
}
TY  - JOUR
AU  - Reeder, Mark
AU  - Yu, Jiu-Kang
TI  - Epipelagic representations and invariant theory
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 437
EP  - 477
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00780-8/
DO  - 10.1090/S0894-0347-2013-00780-8
ID  - 10_1090_S0894_0347_2013_00780_8
ER  - 
%0 Journal Article
%A Reeder, Mark
%A Yu, Jiu-Kang
%T Epipelagic representations and invariant theory
%J Journal of the American Mathematical Society
%D 2014
%P 437-477
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00780-8/
%R 10.1090/S0894-0347-2013-00780-8
%F 10_1090_S0894_0347_2013_00780_8
Reeder, Mark; Yu, Jiu-Kang. Epipelagic representations and invariant theory. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 437-477. doi: 10.1090/S0894-0347-2013-00780-8

[1] Adler, Jeffrey D. Refined anisotropic 𝐾-types and supercuspidal representations Pacific J. Math. 1998 1 32

[2] Adler, Jeffrey D., Debacker, Stephen Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive 𝑝-adic group Michigan Math. J. 2002 263 286

[3] Borel, Armand Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes Tohoku Math. J. (2) 1961 216 240

[4] Borel, A., Serre, J.-P. Sur certains sous-groupes des groupes de Lie compacts Comment. Math. Helv. 1953 128 139

[5] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 4–6 2002

[6] Bruhat, F., Tits, J. Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251

[7] Bruhat, F., Tits, J. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376

[8] Bushnell, Colin J., Henniart, Guy The local Langlands conjecture for 𝐺𝐿(2) 2006

[9] Carayol, Henri Représentations supercuspidales de 𝐺𝐿_{𝑛} C. R. Acad. Sci. Paris Sér. A-B 1979

[10] Debacker, Stephen Parametrizing nilpotent orbits via Bruhat-Tits theory Ann. of Math. (2) 2002 295 332

[11] Gan, Wee Teck, Savin, Gordan Endoscopic lifts from 𝑃𝐺𝐿₃ to 𝐺₂ Compos. Math. 2004 793 808

[12] Gross, Benedict H. Irreducible cuspidal representations with prescribed local behavior Amer. J. Math. 2011 1231 1258

[13] Gross, Benedict H., Reeder, Mark Arithmetic invariants of discrete Langlands parameters Duke Math. J. 2010 431 508

[14] Gross, Benedict H., Savin, Gordan The dual pair 𝑃𝐺𝐿₃×𝐺₂ Canad. Math. Bull. 1997 376 384

[15] Heinloth, Jochen, Ngã´, Bao-Chã¢U, Yun, Zhiwei Kloosterman sheaves for reductive groups Ann. of Math. (2) 2013 241 310

[16] Hiraga, Kaoru, Ichino, Atsushi, Ikeda, Tamotsu Formal degrees and adjoint 𝛾-factors J. Amer. Math. Soc. 2008 283 304

[17] Khare, Chandrashekhar, Larsen, Michael, Savin, Gordan Functoriality and the inverse Galois problem. II. Groups of type 𝐵_{𝑛} and 𝐺₂ Ann. Fac. Sci. Toulouse Math. (6) 2010 37 70

[18] Kim, Ju-Lee Supercuspidal representations: an exhaustion theorem J. Amer. Math. Soc. 2007 273 320

[19] Knightly, Andrew, Li, Charles Modular 𝐿-values of cubic level Pacific J. Math. 2012 527 563

[20] Kostrikin, Alexei I., PhạM Hå©Â€™U TiệP Orthogonal decompositions and integral lattices 1994

[21] Kutzko, P. C. Mackey’s theorem for nonunitary representations Proc. Amer. Math. Soc. 1977 173 175

[22] Levy, Paul Vinberg’s 𝜃-groups in positive characteristic and Kostant-Weierstrass slices Transform. Groups 2009 417 461

[23] Lusztig, George Some examples of square integrable representations of semisimple 𝑝-adic groups Trans. Amer. Math. Soc. 1983 623 653

[24] Moy, Allen, Prasad, Gopal Unrefined minimal 𝐾-types for 𝑝-adic groups Invent. Math. 1994 393 408

[25] Moy, Allen, Prasad, Gopal Jacquet functors and unrefined minimal 𝐾-types Comment. Math. Helv. 1996 98 121

[26] Mumford, David Stability of projective varieties Enseign. Math. (2) 1977 39 110

[27] Reeder, Mark On the Iwahori-spherical discrete series for 𝑝-adic Chevalley groups Ann. Sci. École Norm. Sup. (4) 1994 463 491

[28] Reeder, Mark Torsion automorphisms of simple Lie algebras Enseign. Math. (2) 2010 3 47

[29] Reeder, Mark Elliptic centralizers in Weyl groups and their coinvariant representations Represent. Theory 2011 63 111

[30] Reeder, Mark, Levy, Paul, Yu, Jiu-Kang, Gross, Benedict H. Gradings of positive rank on simple Lie algebras Transform. Groups 2012 1123 1190

[31] Springer, T. A. Regular elements of finite reflection groups Invent. Math. 1974 159 198

[32] Steinberg, Robert Torsion in reductive groups Advances in Math. 1975 63 92

[33] Tits, J. Reductive groups over local fields 1979 29 69

[34] Vinberg, È. B. The Weyl group of a graded Lie algebra Izv. Akad. Nauk SSSR Ser. Mat. 1976

[35] Yu, Jiu-Kang Construction of tame supercuspidal representations J. Amer. Math. Soc. 2001 579 622

Cité par Sources :