Entropy, determinants, and 𝐿²-torsion
Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 239-292

Voir la notice de l'article provenant de la source American Mathematical Society

We show that for any amenable group $\Gamma$ and any $\mathbb {Z} \Gamma$-module $\mathcal {M}$ of type FL with vanishing Euler characteristic, the entropy of the natural $\Gamma$-action on the Pontryagin dual of ${\mathcal {M}}$ is equal to the $L^2$-torsion of $\mathcal {M}$. As a particular case, the entropy of the principal algebraic action associated with the module $\mathbb {Z} \Gamma /\mathbb {Z} \Gamma f$ is equal to the logarithm of the Fuglede-Kadison determinant of $f$ whenever $f$ is a non-zero-divisor in $\mathbb {Z}\Gamma$. This confirms a conjecture of Deninger. As a key step in the proof we provide a general Szegő-type approximation theorem for the Fuglede-Kadison determinant on the group von Neumann algebra of an amenable group. As a consequence of the equality between $L^2$-torsion and entropy, we show that the $L^2$-torsion of a nontrivial amenable group with finite classifying space vanishes. This was conjectured by Lück. Finally, we establish a Milnor-Turaev formula for the $L^2$-torsion of a finite $\Delta$-acyclic chain complex.
DOI : 10.1090/S0894-0347-2013-00778-X

Li, Hanfeng 1 ; Thom, Andreas 2

1 Department of Mathematics, Chongqing University, Chongqing 401331, China — and — Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260-2900
2 Mathematisches Institut, Universität Leipzig, PF 100920, 04009 Leipzig, Germany
@article{10_1090_S0894_0347_2013_00778_X,
     author = {Li, Hanfeng and Thom, Andreas},
     title = {Entropy, determinants, and {{\dh}{\textquestiondown}\^A{\texttwosuperior}-torsion}},
     journal = {Journal of the American Mathematical Society},
     pages = {239--292},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00778-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00778-X/}
}
TY  - JOUR
AU  - Li, Hanfeng
AU  - Thom, Andreas
TI  - Entropy, determinants, and 𝐿²-torsion
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 239
EP  - 292
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00778-X/
DO  - 10.1090/S0894-0347-2013-00778-X
ID  - 10_1090_S0894_0347_2013_00778_X
ER  - 
%0 Journal Article
%A Li, Hanfeng
%A Thom, Andreas
%T Entropy, determinants, and 𝐿²-torsion
%J Journal of the American Mathematical Society
%D 2014
%P 239-292
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00778-X/
%R 10.1090/S0894-0347-2013-00778-X
%F 10_1090_S0894_0347_2013_00778_X
Li, Hanfeng; Thom, Andreas. Entropy, determinants, and 𝐿²-torsion. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 239-292. doi: 10.1090/S0894-0347-2013-00778-X

[1] Anderson, Frank W., Fuller, Kent R. Rings and categories of modules 1992

[2] Bestvina, Mladen, Brady, Noel Morse theory and finiteness properties of groups Invent. Math. 1997 445 470

[3] Billingsley, Patrick Convergence of probability measures 1999

[4] Boca, Florin-Petre Rotation 𝐶*-algebras and almost Mathieu operators 2001

[5] Bowen, Lewis Measure conjugacy invariants for actions of countable sofic groups J. Amer. Math. Soc. 2010 217 245

[6] Bowen, Lewis Entropy for expansive algebraic actions of residually finite groups Ergodic Theory Dynam. Systems 2011 703 718

[7] Bowen, Lewis, Li, Hanfeng Harmonic models and spanning forests of residually finite groups J. Funct. Anal. 2012 1769 1808

[8] Braverman, Maxim, Carey, Alan, Farber, Michael, Mathai, Varghese 𝐿² torsion without the determinant class condition and extended 𝐿² cohomology Commun. Contemp. Math. 2005 421 462

[9] Brown, Kenneth S. Cohomology of groups 1994

[10] Carey, A., Farber, M., Mathai, V. Determinant lines, von Neumann algebras and 𝐿² torsion J. Reine Angew. Math. 1997 153 181

[11] Mathai, Varghese, Carey, Alan L. 𝐿²-acyclicity and 𝐿²-torsion invariants 1990 91 118

[12] Carey, Alan L., Mathai, Varghese 𝐿²-torsion invariants J. Funct. Anal. 1992 377 409

[13] Ceccherini-Silberstein, Tullio, Coornaert, Michel Cellular automata and groups 2010

[14] Danilenko, Alexandre I. Entropy theory from the orbital point of view Monatsh. Math. 2001 121 141

[15] Cohen, Marshall M. A course in simple-homotopy theory 1973

[16] Deninger, Christopher Deligne periods of mixed motives, 𝐾-theory and the entropy of certain 𝑍ⁿ-actions J. Amer. Math. Soc. 1997 259 281

[17] Deninger, Christopher Fuglede-Kadison determinants and entropy for actions of discrete amenable groups J. Amer. Math. Soc. 2006 737 758

[18] Deninger, Christopher Mahler measures and Fuglede-Kadison determinants Münster J. Math. 2009 45 63

[19] Deninger, Christopher Regulators, entropy and infinite determinants 2012 117 134

[20] Deninger, Christopher, Schmidt, Klaus Expansive algebraic actions of discrete residually finite amenable groups and their entropy Ergodic Theory Dynam. Systems 2007 769 786

[21] Dodziuk, Jã³Zef, Linnell, Peter, Mathai, Varghese, Schick, Thomas, Yates, Stuart Approximating 𝐿²-invariants and the Atiyah conjecture Comm. Pure Appl. Math. 2003 839 873

[22] Dodziuk, Jozef, Mathai, Varghese Approximating 𝐿² invariants of amenable covering spaces: a combinatorial approach J. Funct. Anal. 1998 359 378

[23] Eilenberg, Samuel, Ganea, Tudor On the Lusternik-Schnirelmann category of abstract groups Ann. of Math. (2) 1957 517 518

[24] Elek, Gã¡Bor On the analytic zero divisor conjecture of Linnell Bull. London Math. Soc. 2003 236 238

[25] Elek, Gã¡Bor, Szabã³, Endre Hyperlinearity, essentially free actions and 𝐿²-invariants. The sofic property Math. Ann. 2005 421 441

[26] Fuglede, Bent, Kadison, Richard V. Determinant theory in finite factors Ann. of Math. (2) 1952 520 530

[27] Gantmacher, F. P., Krein, M. G. Oscillation matrices and kernels and small vibrations of mechanical systems 2002

[28] Geoghegan, Ross Topological methods in group theory 2008

[29] Haagerup, Uffe, Schultz, Hanne Brown measures of unbounded operators affiliated with a finite von Neumann algebra Math. Scand. 2007 209 263

[30] Helson, Henry, Lowdenslager, David Prediction theory and Fourier series in several variables Acta Math. 1958 165 202

[31] Johnson, Charles R., Barrett, Wayne W. Spanning-tree extensions of the Hadamard-Fischer inequalities Linear Algebra Appl. 1985 177 193

[32] Kadison, Richard V. Diagonalizing matrices Amer. J. Math. 1984 1451 1468

[33] Kadison, Richard V., Ringrose, John R. Fundamentals of the theory of operator algebras. Vol. II 1997

[34] Kadison, Richard V., Ringrose, John R. Fundamentals of the theory of operator algebras. Vol. I 1997

[35] Kerr, David, Li, Hanfeng Entropy and the variational principle for actions of sofic groups Invent. Math. 2011 501 558

[36] Kelmans, A. K., Kimel′Fel′D, B. N. Multiplicative submodularity of a matrix’s principal minor as a function of the set of its rows, and some combinatorial applications Discrete Math. 1983 113 116

[37] Kropholler, P. H., Martinez-Pã©Rez, C., Nucinkis, B. E. A. Cohomological finiteness conditions for elementary amenable groups J. Reine Angew. Math. 2009 49 62

[38] Lam, T. Y. Lectures on modules and rings 1999

[39] Lang, Serge Algebra 2002

[40] Li, Hanfeng Compact group automorphisms, addition formulas and Fuglede-Kadison determinants Ann. of Math. (2) 2012 303 347

[41] Lind, Douglas, Schmidt, Klaus, Verbitskiy, Evgeny Entropy and growth rate of periodic points of algebraic ℤ^{𝕕}-actions 2010 195 211

[42] Lind, Douglas, Schmidt, Klaus, Ward, Tom Mahler measure and entropy for commuting automorphisms of compact groups Invent. Math. 1990 593 629

[43] Lindenstrauss, Elon, Weiss, Benjamin Mean topological dimension Israel J. Math. 2000 1 24

[44] Linnik, I. Ju. A multidimensional analogue of G. Szegő’s limit theorem Izv. Akad. Nauk SSSR Ser. Mat. 1975

[45] Lã¼Ck, W. Approximating 𝐿²-invariants by their finite-dimensional analogues Geom. Funct. Anal. 1994 455 481

[46] Lã¼Ck, Wolfgang 𝐿²-invariants of regular coverings of compact manifolds and CW-complexes 2002 735 817

[47] Lã¼Ck, Wolfgang 𝐿²-invariants: theory and applications to geometry and 𝐾-theory 2002

[48] Lã¼Ck, Wolfgang, Rã¸Rdam, Mikael Algebraic 𝐾-theory of von Neumann algebras 𝐾-Theory 1993 517 536

[49] Lã¼Ck, Wolfgang, Rothenberg, Mel Reidemeister torsion and the 𝐾-theory of von Neumann algebras 𝐾-Theory 1991 213 264

[50] Lã¼Ck, Wolfgang, Sauer, Roman, Wegner, Christian 𝐿²-torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence J. Topol. Anal. 2010 145 171

[51] Lyons, Russell Asymptotic enumeration of spanning trees Combin. Probab. Comput. 2005 491 522

[52] Lyons, Russell Identities and inequalities for tree entropy Combin. Probab. Comput. 2010 303 313

[53] Milnor, J. Whitehead torsion Bull. Amer. Math. Soc. 1966 358 426

[54] Milnor, John W. Infinite cyclic coverings 1968 115 133

[55] Moulin Ollagnier, Jean Ergodic theory and statistical mechanics 1985

[56] Ornstein, Donald S., Weiss, Benjamin Entropy and isomorphism theorems for actions of amenable groups J. Analyse Math. 1987 1 141

[57] Osborne, M. Scott Basic homological algebra 2000

[58] Passman, Donald S. The algebraic structure of group rings 1977

[59] Peters, Justin Entropy on discrete abelian groups Adv. in Math. 1979 1 13

[60] Peterson, Jesse, Thom, Andreas Group cocycles and the ring of affiliated operators Invent. Math. 2011 561 592

[61] Rosenberg, Jonathan Algebraic 𝐾-theory and its applications 1994

[62] Schick, Thomas 𝐿²-determinant class and approximation of 𝐿²-Betti numbers Trans. Amer. Math. Soc. 2001 3247 3265

[63] Schmidt, Klaus Dynamical systems of algebraic origin 1995

[64] Simon, Barry Orthogonal polynomials on the unit circle. Part 1 2005

[65] Solomyak, Rita On coincidence of entropies for two classes of dynamical systems Ergodic Theory Dynam. Systems 1998 731 738

[66] Szegã¶, G. Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion Math. Ann. 1915 490 503

[67] Takesaki, M. Theory of operator algebras. I 2002

[68] Turaev, V. G. Reidemeister torsion in knot theory Uspekhi Mat. Nauk 1986

[69] Turaev, Vladimir Torsions of 3-dimensional manifolds 2002

[70] Wall, C. T. C. Finiteness conditions for 𝐶𝑊-complexes Ann. of Math. (2) 1965 56 69

[71] Wall, C. T. C. Finiteness conditions for 𝐶𝑊 complexes. II Proc. Roy. Soc. London Ser. A 1966 129 139

[72] Walters, Peter An introduction to ergodic theory 1982

[73] Wegner, Christian 𝐿²-invariants of finite aspherical CW-complexes Manuscripta Math. 2009 469 481

[74] Juzvinskiä­, S. A. Calculation of the entropy of a group-endomorphism Sibirsk. Mat. Ž. 1967 230 239

Cité par Sources :