A Higman embedding preserving asphericity
Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 1-42

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that every finitely generated group with recursive aspherical presentation embeds into a group with finite aspherical presentation. This and several known facts about groups and manifolds imply that there exists a 4-dimensional closed aspherical manifold $M$ such that the fundamental group $\pi _1(M)$ coarsely contains an expander. Thus it has infinite asymptotic dimension, is not coarsely embeddable into a Hilbert space, does not satisfy G. Yu’s property A, and does not satisfy the Baum-Connes conjecture with coefficients. Closed aspherical manifolds with any of these properties were previously unknown.
DOI : 10.1090/S0894-0347-2013-00776-6

Sapir, Mark 1

1 Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
@article{10_1090_S0894_0347_2013_00776_6,
     author = {Sapir, Mark},
     title = {A {Higman} embedding preserving asphericity},
     journal = {Journal of the American Mathematical Society},
     pages = {1--42},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00776-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00776-6/}
}
TY  - JOUR
AU  - Sapir, Mark
TI  - A Higman embedding preserving asphericity
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 1
EP  - 42
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00776-6/
DO  - 10.1090/S0894-0347-2013-00776-6
ID  - 10_1090_S0894_0347_2013_00776_6
ER  - 
%0 Journal Article
%A Sapir, Mark
%T A Higman embedding preserving asphericity
%J Journal of the American Mathematical Society
%D 2014
%P 1-42
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00776-6/
%R 10.1090/S0894-0347-2013-00776-6
%F 10_1090_S0894_0347_2013_00776_6
Sapir, Mark. A Higman embedding preserving asphericity. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 1-42. doi: 10.1090/S0894-0347-2013-00776-6

[1] Birget, J.-C., Ol′Shanskii, A. Yu., Rips, E., Sapir, M. V. Isoperimetric functions of groups and computational complexity of the word problem Ann. of Math. (2) 2002 467 518

[2] Baumslag, G., Dyer, E., Miller, C. F., Iii On the integral homology of finitely presented groups Topology 1983 27 46

[3] Bogopolski, Oleg, Ventura, Enric A recursive presentation for Mihailova’s subgroup Groups Geom. Dyn. 2010 407 417

[4] Chiswell, Ian M., Collins, Donald J., Huebschmann, Johannes Aspherical group presentations Math. Z. 1981 1 36

[5] Collins, D. J., Huebschmann, J. Spherical diagrams and identities among relations Math. Ann. 1982 155 183

[6] Davis, Michael W. Exotic aspherical manifolds 2002 371 404

[7] Davis, Michael W. The geometry and topology of Coxeter groups 2008

[8] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[9] Gromov, M. Random walk in random groups Geom. Funct. Anal. 2003 73 146

[10] Guentner, Erik, Tessera, Romain, Yu, Guoliang A notion of geometric complexity and its application to topological rigidity Invent. Math. 2012 315 357

[11] Higman, G. Subgroups of finitely presented groups Proc. Roy. Soc. London Ser. A 1961 455 475

[12] Higson, N., Lafforgue, V., Skandalis, G. Counterexamples to the Baum-Connes conjecture Geom. Funct. Anal. 2002 330 354

[13] Lã¼Ck, Wolfgang Survey on aspherical manifolds 2010 53 82

[14] Lyndon, Roger C., Schupp, Paul E. Combinatorial group theory 1977

[15] Muranov, Alexey Finitely generated infinite simple groups of infinite square width and vanishing stable commutator length J. Topol. Anal. 2010 341 384

[16] Ol′Shanskiä­, A. Yu. Geometry of defining relations in groups 1991

[17] Ol′Shanskiä­, A. Yu. 𝑆𝑄-universality of hyperbolic groups Mat. Sb. 1995 119 132

[18] Ol′Shanskii, Alexander Yu., Osin, Denis V., Sapir, Mark V. Lacunary hyperbolic groups Geom. Topol. 2009 2051 2140

[19] Ol′Shanskii, A. Yu., Sapir, M. V. The conjugacy problem and Higman embeddings Mem. Amer. Math. Soc. 2004

[20] Ol′Shanskii, A. Yu., Sapir, M. V. Groups with small Dehn functions and bipartite chord diagrams Geom. Funct. Anal. 2006 1324 1376

[21] Rotman, Joseph J. An introduction to the theory of groups 1995

[22] Sapir, Mark Algorithmic and asymptotic properties of groups 2006 223 244

[23] Sapir, Mark Asymptotic invariants, complexity of groups and related problems Bull. Math. Sci. 2011 277 364

[24] Sapir, Mark V., Birget, Jean-Camille, Rips, Eliyahu Isoperimetric and isodiametric functions of groups Ann. of Math. (2) 2002 345 466

[25] Willett, Rufus Property A and graphs with large girth J. Topol. Anal. 2011 377 384

[26] Yu, Guoliang The Novikov conjecture for groups with finite asymptotic dimension Ann. of Math. (2) 1998 325 355

[27] Yu, Guoliang The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space Invent. Math. 2000 201 240

Cité par Sources :