The Buzzard–Diamond–Jarvis conjecture for unitary groups
Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 389-435

Voir la notice de l'article provenant de la source American Mathematical Society

Let $p>2$ be prime. We prove the weight part of Serre’s conjecture for rank two unitary groups for mod $p$ representations in the unramified case (that is, the Buzzard–Diamond–Jarvis conjecture for unitary groups), by proving that any Serre weight which occurs is a predicted weight. Our methods are purely local, using the theory of $(\varphi ,\hat {G})$-modules to determine the possible reductions of certain two-dimensional crystalline representations.
DOI : 10.1090/S0894-0347-2013-00775-4

Gee, Toby 1 ; Liu, Tong 2 ; Savitt, David 3

1 Department of Mathematics, Imperial College London, London, SW7 2AZ United Kingdom
2 Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907
3 Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, Arizona 85721-0089
@article{10_1090_S0894_0347_2013_00775_4,
     author = {Gee, Toby and Liu, Tong and Savitt, David},
     title = {The {Buzzard\^a€“Diamond\^a€“Jarvis} conjecture for unitary groups},
     journal = {Journal of the American Mathematical Society},
     pages = {389--435},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00775-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00775-4/}
}
TY  - JOUR
AU  - Gee, Toby
AU  - Liu, Tong
AU  - Savitt, David
TI  - The Buzzard–Diamond–Jarvis conjecture for unitary groups
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 389
EP  - 435
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00775-4/
DO  - 10.1090/S0894-0347-2013-00775-4
ID  - 10_1090_S0894_0347_2013_00775_4
ER  - 
%0 Journal Article
%A Gee, Toby
%A Liu, Tong
%A Savitt, David
%T The Buzzard–Diamond–Jarvis conjecture for unitary groups
%J Journal of the American Mathematical Society
%D 2014
%P 389-435
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00775-4/
%R 10.1090/S0894-0347-2013-00775-4
%F 10_1090_S0894_0347_2013_00775_4
Gee, Toby; Liu, Tong; Savitt, David. The Buzzard–Diamond–Jarvis conjecture for unitary groups. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 389-435. doi: 10.1090/S0894-0347-2013-00775-4

[1] Buzzard, Kevin, Diamond, Fred, Jarvis, Frazer On Serre’s conjecture for mod ℓ Galois representations over totally real fields Duke Math. J. 2010 105 161

[2] Barnet-Lamb, Thomas, Gee, Toby, Geraghty, David Congruences between Hilbert modular forms: constructing ordinary lifts Duke Math. J. 2012 1521 1580

[3] Breuil, Christophe Représentations 𝑝-adiques semi-stables et transversalité de Griffiths Math. Ann. 1997 191 224

[4] Breuil, Christophe Une application de corps des normes Compositio Math. 1999 189 203

[5] Breuil, Christophe Groupes 𝑝-divisibles, groupes finis et modules filtrés Ann. of Math. (2) 2000 489 549

[6] Chang, Seunghwan, Diamond, Fred Extensions of rank one (𝜙,Γ)-modules and crystalline representations Compos. Math. 2011 375 427

[7] Caruso, Xavier, Liu, Tong Some bounds for ramification of 𝑝ⁿ-torsion semi-stable representations J. Algebra 2011 70 96

[8] Dousmanis, Gerasimos On reductions of families of crystalline Galois representations Doc. Math. 2010 873 938

[9] Fontaine, Jean-Marc Représentations 𝑝-adiques des corps locaux. I 1990 249 309

[10] Fontaine, Jean-Marc Le corps des périodes 𝑝-adiques Astérisque 1994 59 111

[11] Gee, Toby On the weights of mod 𝑝 Hilbert modular forms Invent. Math. 2011 1 46

[12] Gee, Toby, Liu, Tong, Savitt, David Crystalline extensions and the weight part of Serre’s conjecture Algebra Number Theory 2012 1537 1559

[13] Gee, Toby, Savitt, David Serre weights for mod 𝑝 Hilbert modular forms: the totally ramified case J. Reine Angew. Math. 2011 1 26

[14] Kisin, Mark Crystalline representations and 𝐹-crystals 2006 459 496

[15] Kisin, Mark Potentially semi-stable deformation rings J. Amer. Math. Soc. 2008 513 546

[16] Kisin, Mark Moduli of finite flat group schemes, and modularity Ann. of Math. (2) 2009 1085 1180

[17] Liu, Tong Torsion 𝑝-adic Galois representations and a conjecture of Fontaine Ann. Sci. École Norm. Sup. (4) 2007 633 674

[18] Liu, Tong On lattices in semi-stable representations: a proof of a conjecture of Breuil Compos. Math. 2008 61 88

[19] Liu, Tong A note on lattices in semi-stable representations Math. Ann. 2010 117 138

[20] Liu, Tong Lattices in filtered (𝜙,𝑁)-modules J. Inst. Math. Jussieu 2012 659 693

[21] Nekovã¡Å™, Jan On 𝑝-adic height pairings 1993 127 202

[22] Savitt, David Breuil modules for Raynaud schemes J. Number Theory 2008 2939 2950

[23] Thorne, Jack On the automorphy of 𝑙-adic Galois representations with small residual image J. Inst. Math. Jussieu 2012 855 920

Cité par Sources :