Ising interfaces and free boundary conditions
Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1107-1189

Voir la notice de l'article provenant de la source American Mathematical Society

We study the interfaces arising in the two-dimensional Ising model at critical temperature, without magnetic field. We show that in the presence of free boundary conditions between plus and minus spins, the scaling limit of these interfaces can be described by a variant of SLE, called dipolar SLE(3). This generalizes a celebrated result of Chelkak and Smirnov and proves a conjecture of Bauer, Bernard, and Houdayer. We mention two possible applications of our result.
DOI : 10.1090/S0894-0347-2013-00774-2

Hongler, Clément 1 ; Kytölä, Kalle 2

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
2 Department of Mathematics and Statistics, P.O. Box 68, FIN–00014 University of Helsinki, Finland
@article{10_1090_S0894_0347_2013_00774_2,
     author = {Hongler, Cl\~A{\textcopyright}ment and Kyt\~A{\textparagraph}l\~A{\textcurrency}, Kalle},
     title = {Ising interfaces and free boundary conditions},
     journal = {Journal of the American Mathematical Society},
     pages = {1107--1189},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00774-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00774-2/}
}
TY  - JOUR
AU  - Hongler, Clément
AU  - Kytölä, Kalle
TI  - Ising interfaces and free boundary conditions
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 1107
EP  - 1189
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00774-2/
DO  - 10.1090/S0894-0347-2013-00774-2
ID  - 10_1090_S0894_0347_2013_00774_2
ER  - 
%0 Journal Article
%A Hongler, Clément
%A Kytölä, Kalle
%T Ising interfaces and free boundary conditions
%J Journal of the American Mathematical Society
%D 2013
%P 1107-1189
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00774-2/
%R 10.1090/S0894-0347-2013-00774-2
%F 10_1090_S0894_0347_2013_00774_2
Hongler, Clément; Kytölä, Kalle. Ising interfaces and free boundary conditions. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1107-1189. doi: 10.1090/S0894-0347-2013-00774-2

[1] Abramowitz, Milton, Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables 1964

[2] Aizenman, M., Burchard, A. Hölder regularity and dimension bounds for random curves Duke Math. J. 1999 419 453

[3] Baxter, Rodney J. Exactly solved models in statistical mechanics 1989

[4] Bauer, M., Bernard, D., Houdayer, J. Dipolar stochastic Loewner evolutions J. Stat. Mech. Theory Exp. 2005

[5] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B. Infinite conformal symmetry in two-dimensional quantum field theory Nuclear Phys. B 1984 333 380

[6] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B. Infinite conformal symmetry of critical fluctuations in two dimensions J. Statist. Phys. 1984 763 774

[7] Beliaev, Dmitri, Izyurov, Konstantin A proof of factorization formula for critical percolation Comm. Math. Phys. 2012 611 623

[8] Camia, Federico, Newman, Charles M. Critical percolation exploration path and 𝑆𝐿𝐸₆: a proof of convergence Probab. Theory Related Fields 2007 473 519

[9] Camia, Federico, Newman, Charles M. Two-dimensional critical percolation: the full scaling limit Comm. Math. Phys. 2006 1 38

[10] Cardy, John L. Critical percolation in finite geometries J. Phys. A 1992

[11] Chelkak, Dmitry, Smirnov, Stanislav Discrete complex analysis on isoradial graphs Adv. Math. 2011 1590 1630

[12] Chelkak, Dmitry, Smirnov, Stanislav Universality in the 2D Ising model and conformal invariance of fermionic observables Invent. Math. 2012 515 580

[13] Di Francesco, Philippe, Mathieu, Pierre, Sã©Nã©Chal, David Conformal field theory 1997

[14] Duminil-Copin, Hugo, Hongler, Clã©Ment, Nolin, Pierre Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model Comm. Pure Appl. Math. 2011 1165 1198

[15] Fisher, Michael E. Renormalization group theory: its basis and formulation in statistical physics Rev. Modern Phys. 1998 653 681

[16] Garban, Christophe, Rohde, Steffen, Schramm, Oded Continuity of the SLE trace in simply connected domains Israel J. Math. 2012 23 36

[17] Grimmett, Geoffrey The random-cluster model 2006

[18] Kadanoff, Leo P., Ceva, Horacio Determination of an operator algebra for the two-dimensional Ising model Phys. Rev. B (3) 1971 3918 3939

[19] Kemppainen, Antti Stationarity of SLE J. Stat. Phys. 2010 108 121

[20] Kenyon, Richard Conformal invariance of domino tiling Ann. Probab. 2000 759 795

[21] Kytã¶Lã¤, Kalle On conformal field theory of 𝑆𝐿𝐸(𝜅,𝜌) J. Stat. Phys. 2006 1169 1181

[22] Kramers, H. A., Wannier, G. H. Statistics of the two-dimensional ferromagnet. I Phys. Rev. (2) 1941 252 262

[23] Langlands, Robert P., Lewis, Marc-Andrã©, Saint-Aubin, Yvan Universality and conformal invariance for the Ising model in domains with boundary J. Statist. Phys. 2000 131 244

[24] Langlands, Robert, Pouliot, Philippe, Saint-Aubin, Yvan Conformal invariance in two-dimensional percolation Bull. Amer. Math. Soc. (N.S.) 1994 1 61

[25] Lawler, Gregory F. Conformally invariant processes in the plane 2005

[26] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. II. Plane exponents Acta Math. 2001 275 308

[27] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Conformal invariance of planar loop-erased random walks and uniform spanning trees Ann. Probab. 2004 939 995

[28] Makarov, Nikolai, Smirnov, Stanislav Off-critical lattice models and massive SLEs 2010 362 371

[29] Onsager, Lars Crystal statistics. I. A two-dimensional model with an order-disorder transition Phys. Rev. (2) 1944 117 149

[30] Palmer, John Planar Ising correlations 2007

[31] Pfister, C.-E., Velenik, Y. Interface, surface tension and reentrant pinning transition in the 2D Ising model Comm. Math. Phys. 1999 269 312

[32] Rohde, Steffen, Schramm, Oded Basic properties of SLE Ann. of Math. (2) 2005 883 924

[33] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288

[34] Schramm, Oded Conformally invariant scaling limits: an overview and a collection of problems 2007 513 543

[35] Schramm, Oded, Sheffield, Scott Contour lines of the two-dimensional discrete Gaussian free field Acta Math. 2009 21 137

[36] Schramm, Oded, Wilson, David B. SLE coordinate changes New York J. Math. 2005 659 669

[37] Sheffield, Scott Exploration trees and conformal loop ensembles Duke Math. J. 2009 79 129

[38] Sheffield, Scott, Werner, Wendelin Conformal loop ensembles: the Markovian characterization and the loop-soup construction Ann. of Math. (2) 2012 1827 1917

[39] Smirnov, Stanislav Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244

[40] Smirnov, Stanislav Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244

[41] Smirnov, Stanislav Towards conformal invariance of 2D lattice models 2006 1421 1451

[42] Smirnov, Stanislav Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model Ann. of Math. (2) 2010 1435 1467

[43] Smirnov, Stanislav Discrete complex analysis and probability 2010 595 621

[44] Strassen, V. The existence of probability measures with given marginals Ann. Math. Statist. 1965 423 439

[45] Werner, Wendelin Girsanov’s transformation for 𝑆𝐿𝐸(𝜅,𝜌) processes, intersection exponents and hiding exponents Ann. Fac. Sci. Toulouse Math. (6) 2004 121 147

[46] Werner, Wendelin Percolation et modèle d’Ising 2009

Cité par Sources :