Pivotal, cluster, and interface measures for critical planar percolation
Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 939-1024

Voir la notice de l'article provenant de la source American Mathematical Society

This work is the first in a series of papers devoted to the construction and study of scaling limits of dynamical and near-critical planar percolation and related objects like invasion percolation and the Minimal Spanning Tree. We show here that the counting measure on the set of pivotal points of critical site percolation on the triangular grid, normalized appropriately, has a scaling limit, which is a function of the scaling limit of the percolation configuration. We also show that this limit measure is conformally covariant, with exponent 3/4. Similar results hold for the counting measure on macroscopic open clusters (the area measure) and for the counting measure on interfaces (length measure). Since the aforementioned processes are very much governed by pivotal sites, the construction and properties of the “local time”-like pivotal measure are key results in this project. Another application is that the existence of the limit length measure on the interface is a key step towards constructing the so-called natural time-parametrization of the $\mathrm {SLE}_6$ curve. The proofs make extensive use of coupling arguments, based on the separation of interfaces phenomenon. This is a very useful tool in planar statistical physics, on which we included a self-contained Appendix. Simple corollaries of our methods include ratio limit theorems for arm probabilities and the rotational invariance of the two-point function.
DOI : 10.1090/S0894-0347-2013-00772-9

Garban, Christophe 1 ; Pete, Gábor 2 ; Schramm, Oded 3

1 Ecole Normale Superieure de Lyon, CNRS and UMPA, 46 Allee d’Italie, 69364 Lyon, Cedex 07 France
2 Institute of Mathematics, Technical University of Budapest, 1 Egry József u, Budapest, 1111 Hungary
3 Microsoft Research, December 10, 1961–September 1, 2008
@article{10_1090_S0894_0347_2013_00772_9,
     author = {Garban, Christophe and Pete, G\~A{\textexclamdown}bor and Schramm, Oded},
     title = {Pivotal, cluster, and interface measures for critical planar percolation},
     journal = {Journal of the American Mathematical Society},
     pages = {939--1024},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00772-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00772-9/}
}
TY  - JOUR
AU  - Garban, Christophe
AU  - Pete, Gábor
AU  - Schramm, Oded
TI  - Pivotal, cluster, and interface measures for critical planar percolation
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 939
EP  - 1024
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00772-9/
DO  - 10.1090/S0894-0347-2013-00772-9
ID  - 10_1090_S0894_0347_2013_00772_9
ER  - 
%0 Journal Article
%A Garban, Christophe
%A Pete, Gábor
%A Schramm, Oded
%T Pivotal, cluster, and interface measures for critical planar percolation
%J Journal of the American Mathematical Society
%D 2013
%P 939-1024
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00772-9/
%R 10.1090/S0894-0347-2013-00772-9
%F 10_1090_S0894_0347_2013_00772_9
Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster, and interface measures for critical planar percolation. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 939-1024. doi: 10.1090/S0894-0347-2013-00772-9

[1] Aizenman, M. The geometry of critical percolation and conformal invariance 1996 104 120

[2] Barlow, Martin T., Masson, Robert Exponential tail bounds for loop-erased random walk in two dimensions Ann. Probab. 2010 2379 2417

[3] Beffara, Vincent Hausdorff dimensions for 𝑆𝐿𝐸₆ Ann. Probab. 2004 2606 2629

[4] Beffara, Vincent The dimension of the SLE curves Ann. Probab. 2008 1421 1452

[5] Benjamini, Itai, Kalai, Gil, Schramm, Oded Noise sensitivity of Boolean functions and applications to percolation Inst. Hautes Études Sci. Publ. Math. 1999

[6] Borgs, C., Chayes, J. T., Kesten, H., Spencer, J. The birth of the infinite cluster: finite-size scaling in percolation Comm. Math. Phys. 2001 153 204

[7] Camia, Federico, Fontes, Luiz Renato G., Newman, Charles M. Two-dimensional scaling limits via marked nonsimple loops Bull. Braz. Math. Soc. (N.S.) 2006 537 559

[8] Camia, Federico, Newman, Charles M. Two-dimensional critical percolation: the full scaling limit Comm. Math. Phys. 2006 1 38

[9] Camia, Federico, Newman, Charles M. Critical percolation exploration path and 𝑆𝐿𝐸₆: a proof of convergence Probab. Theory Related Fields 2007 473 519

[10] Camia, Federico, Newman, Charles M. Ising (conformal) fields and cluster area measures Proc. Natl. Acad. Sci. USA 2009 5547 5463

[11] Damron, Michael, Sapozhnikov, Artã«M Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters Probab. Theory Related Fields 2011 257 294

[12] Dubã©Dat, Julien Excursion decompositions for SLE and Watts’ crossing formula Probab. Theory Related Fields 2006 453 488

[13] Dubã©Dat, Julien Commutation relations for Schramm-Loewner evolutions Comm. Pure Appl. Math. 2007 1792 1847

[14] Garban, Christophe Oded Schramm’s contributions to noise sensitivity Ann. Probab. 2011 1702 1767

[15] Garban, Christophe, Pete, Gã¡Bor, Schramm, Oded The Fourier spectrum of critical percolation Acta Math. 2010 19 104

[16] Pete, Gã¡Bor, Garban, Christophe, Schramm, Oded The scaling limit of the minimal spanning tree—a preliminary report 2010 475 480

[17] Grimmett, Geoffrey Percolation 1999

[18] Hã¤Ggstrã¶M, Olle, Peres, Yuval, Steif, Jeffrey E. Dynamical percolation Ann. Inst. H. Poincaré Probab. Statist. 1997 497 528

[19] Hara, Takashi Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals Ann. Probab. 2008 530 593

[20] Kesten, Harry The incipient infinite cluster in two-dimensional percolation Probab. Theory Related Fields 1986 369 394

[21] Kesten, Harry Scaling relations for 2D-percolation Comm. Math. Phys. 1987 109 156

[22] Lawler, Gregory F. Strict concavity of the intersection exponent for Brownian motion in two and three dimensions Math. Phys. Electron. J. 1998

[23] Lawler, Gregory F., Sheffield, Scott A natural parametrization for the Schramm-Loewner evolution Ann. Probab. 2011 1896 1937

[24] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. II. Plane exponents Acta Math. 2001 275 308

[25] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Analyticity of intersection exponents for planar Brownian motion Acta Math. 2002 179 201

[26] Makarov, Nikolai, Smirnov, Stanislav Off-critical lattice models and massive SLEs 2010 362 371

[27] Masson, Robert The growth exponent for planar loop-erased random walk Electron. J. Probab. 2009

[28] Mattila, Pertti Geometry of sets and measures in Euclidean spaces 1995

[29] Nolin, Pierre Near-critical percolation in two dimensions Electron. J. Probab. 2008

[30] Nolin, Pierre, Werner, Wendelin Asymmetry of near-critical percolation interfaces J. Amer. Math. Soc. 2009 797 819

[31] Pommerenke, Christian Univalent functions 1975 376

[32] Reimer, David Proof of the van den Berg-Kesten conjecture Combin. Probab. Comput. 2000 27 32

[33] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288

[34] Schramm, Oded, Sheffield, Scott Contour lines of the two-dimensional discrete Gaussian free field Acta Math. 2009 21 137

[35] Schramm, Oded, Smirnov, Stanislav On the scaling limits of planar percolation Ann. Probab. 2011 1768 1814

[36] Schramm, Oded, Steif, Jeffrey E. Quantitative noise sensitivity and exceptional times for percolation Ann. of Math. (2) 2010 619 672

[37] Sheffield, Scott Exploration trees and conformal loop ensembles Duke Math. J. 2009 79 129

[38] Sheffield, Scott, Wilson, David B. Schramm’s proof of Watts’ formula Ann. Probab. 2011 1844 1863

[39] Smirnov, Stanislav Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244

[40] Smirnov, Stanislav Towards conformal invariance of 2D lattice models 2006 1421 1451

[41] Steif, Jeffrey E. A survey of dynamical percolation 2009 145 174

[42] Smirnov, Stanislav, Werner, Wendelin Critical exponents for two-dimensional percolation Math. Res. Lett. 2001 729 744

[43] Werner, Wendelin Lectures on two-dimensional critical percolation 2009 297 360

[44] Zhan, Dapeng Reversibility of chordal SLE Ann. Probab. 2008 1472 1494

Cité par Sources :