Voir la notice de l'article provenant de la source American Mathematical Society
Garban, Christophe 1 ; Pete, Gábor 2 ; Schramm, Oded 3
@article{10_1090_S0894_0347_2013_00772_9,
     author = {Garban, Christophe and Pete, G\~A{\textexclamdown}bor and Schramm, Oded},
     title = {Pivotal, cluster, and interface measures for critical planar percolation},
     journal = {Journal of the American Mathematical Society},
     pages = {939--1024},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00772-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00772-9/}
}
                      
                      
                    TY - JOUR AU - Garban, Christophe AU - Pete, Gábor AU - Schramm, Oded TI - Pivotal, cluster, and interface measures for critical planar percolation JO - Journal of the American Mathematical Society PY - 2013 SP - 939 EP - 1024 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00772-9/ DO - 10.1090/S0894-0347-2013-00772-9 ID - 10_1090_S0894_0347_2013_00772_9 ER -
%0 Journal Article %A Garban, Christophe %A Pete, Gábor %A Schramm, Oded %T Pivotal, cluster, and interface measures for critical planar percolation %J Journal of the American Mathematical Society %D 2013 %P 939-1024 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00772-9/ %R 10.1090/S0894-0347-2013-00772-9 %F 10_1090_S0894_0347_2013_00772_9
Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster, and interface measures for critical planar percolation. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 939-1024. doi: 10.1090/S0894-0347-2013-00772-9
[1] The geometry of critical percolation and conformal invariance 1996 104 120
[2] , Exponential tail bounds for loop-erased random walk in two dimensions Ann. Probab. 2010 2379 2417
[3] Hausdorff dimensions for ðð¿ð¸â Ann. Probab. 2004 2606 2629
[4] The dimension of the SLE curves Ann. Probab. 2008 1421 1452
[5] , , Noise sensitivity of Boolean functions and applications to percolation Inst. Hautes Ãtudes Sci. Publ. Math. 1999
[6] , , , The birth of the infinite cluster: finite-size scaling in percolation Comm. Math. Phys. 2001 153 204
[7] , , Two-dimensional scaling limits via marked nonsimple loops Bull. Braz. Math. Soc. (N.S.) 2006 537 559
[8] , Two-dimensional critical percolation: the full scaling limit Comm. Math. Phys. 2006 1 38
[9] , Critical percolation exploration path and ðð¿ð¸â: a proof of convergence Probab. Theory Related Fields 2007 473 519
[10] , Ising (conformal) fields and cluster area measures Proc. Natl. Acad. Sci. USA 2009 5547 5463
[11] , Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters Probab. Theory Related Fields 2011 257 294
[12] Excursion decompositions for SLE and Wattsâ crossing formula Probab. Theory Related Fields 2006 453 488
[13] Commutation relations for Schramm-Loewner evolutions Comm. Pure Appl. Math. 2007 1792 1847
[14] Oded Schrammâs contributions to noise sensitivity Ann. Probab. 2011 1702 1767
[15] , , The Fourier spectrum of critical percolation Acta Math. 2010 19 104
[16] , , The scaling limit of the minimal spanning treeâa preliminary report 2010 475 480
[17] Percolation 1999
[18] , , Dynamical percolation Ann. Inst. H. Poincaré Probab. Statist. 1997 497 528
[19] Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals Ann. Probab. 2008 530 593
[20] The incipient infinite cluster in two-dimensional percolation Probab. Theory Related Fields 1986 369 394
[21] Scaling relations for 2D-percolation Comm. Math. Phys. 1987 109 156
[22] Strict concavity of the intersection exponent for Brownian motion in two and three dimensions Math. Phys. Electron. J. 1998
[23] , A natural parametrization for the Schramm-Loewner evolution Ann. Probab. 2011 1896 1937
[24] , , Values of Brownian intersection exponents. II. Plane exponents Acta Math. 2001 275 308
[25] , , Analyticity of intersection exponents for planar Brownian motion Acta Math. 2002 179 201
[26] , Off-critical lattice models and massive SLEs 2010 362 371
[27] The growth exponent for planar loop-erased random walk Electron. J. Probab. 2009
[28] Geometry of sets and measures in Euclidean spaces 1995
[29] Near-critical percolation in two dimensions Electron. J. Probab. 2008
[30] , Asymmetry of near-critical percolation interfaces J. Amer. Math. Soc. 2009 797 819
[31] Univalent functions 1975 376
[32] Proof of the van den Berg-Kesten conjecture Combin. Probab. Comput. 2000 27 32
[33] Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288
[34] , Contour lines of the two-dimensional discrete Gaussian free field Acta Math. 2009 21 137
[35] , On the scaling limits of planar percolation Ann. Probab. 2011 1768 1814
[36] , Quantitative noise sensitivity and exceptional times for percolation Ann. of Math. (2) 2010 619 672
[37] Exploration trees and conformal loop ensembles Duke Math. J. 2009 79 129
[38] , Schrammâs proof of Wattsâ formula Ann. Probab. 2011 1844 1863
[39] Critical percolation in the plane: conformal invariance, Cardyâs formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244
[40] Towards conformal invariance of 2D lattice models 2006 1421 1451
[41] A survey of dynamical percolation 2009 145 174
[42] , Critical exponents for two-dimensional percolation Math. Res. Lett. 2001 729 744
[43] Lectures on two-dimensional critical percolation 2009 297 360
[44] Reversibility of chordal SLE Ann. Probab. 2008 1472 1494
Cité par Sources :
