Voir la notice de l'article provenant de la source American Mathematical Society
Abouzaid, Mohammed 1 ; Auroux, Denis 2 ; Efimov, Alexander 3 ; Katzarkov, Ludmil 4 ; Orlov, Dmitri 3
@article{10_1090_S0894_0347_2013_00770_5,
author = {Abouzaid, Mohammed and Auroux, Denis and Efimov, Alexander and Katzarkov, Ludmil and Orlov, Dmitri},
title = {Homological mirror symmetry for punctured spheres},
journal = {Journal of the American Mathematical Society},
pages = {1051--1083},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {2013},
doi = {10.1090/S0894-0347-2013-00770-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00770-5/}
}
TY - JOUR AU - Abouzaid, Mohammed AU - Auroux, Denis AU - Efimov, Alexander AU - Katzarkov, Ludmil AU - Orlov, Dmitri TI - Homological mirror symmetry for punctured spheres JO - Journal of the American Mathematical Society PY - 2013 SP - 1051 EP - 1083 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00770-5/ DO - 10.1090/S0894-0347-2013-00770-5 ID - 10_1090_S0894_0347_2013_00770_5 ER -
%0 Journal Article %A Abouzaid, Mohammed %A Auroux, Denis %A Efimov, Alexander %A Katzarkov, Ludmil %A Orlov, Dmitri %T Homological mirror symmetry for punctured spheres %J Journal of the American Mathematical Society %D 2013 %P 1051-1083 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00770-5/ %R 10.1090/S0894-0347-2013-00770-5 %F 10_1090_S0894_0347_2013_00770_5
Abouzaid, Mohammed; Auroux, Denis; Efimov, Alexander; Katzarkov, Ludmil; Orlov, Dmitri. Homological mirror symmetry for punctured spheres. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1051-1083. doi: 10.1090/S0894-0347-2013-00770-5
[1] Morse homology, tropical geometry, and homological mirror symmetry for toric varieties Selecta Math. (N.S.) 2009 189 270
[2] A geometric criterion for generating the Fukaya category Publ. Math. Inst. Hautes Ãtudes Sci. 2010 191 240
[3] A cotangent fibre generates the Fukaya category Adv. Math. 2011 894 939
[4] , An open string analogue of Viterbo functoriality Geom. Topol. 2010 627 718
[5] , Homological mirror symmetry for the 4-torus Duke Math. J. 2010 373 440
[6] , , Mirror symmetry for weighted projective planes and their noncommutative deformations Ann. of Math. (2) 2008 867 943
[7] , , Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves Invent. Math. 2006 537 582
[8] Homological mirror symmetry for curves of higher genus Adv. Math. 2012 493 530
[9] , Mirror symmetry for toric Fano manifolds via SYZ transformations Adv. Math. 2010 797 839
[10] Products of Floer cohomology of torus fibers in toric Fano manifolds Comm. Math. Phys. 2005 613 640
[11] , , , T-duality and homological mirror symmetry for toric varieties Adv. Math. 2012 1875 1911
[12] Mirror symmetry of abelian varieties and multi-theta functions J. Algebraic Geom. 2002 393 512
[13] , , The symplectic geometry of cotangent bundles from a categorical viewpoint 2009 1 26
[14] , , , Homological mirror symmetry for manifolds of general type Cent. Eur. J. Math. 2009 571 605
[15] , Vertex algebras, mirror symmetry, and D-branes: the case of complex tori Comm. Math. Phys. 2003 79 136
[16] Introduction to ð´-infinity algebras and modules Homology Homotopy Appl. 2001 1 35
[17] On differential graded categories 2006 151 190
[18] Homological algebra of mirror symmetry 1995 120 139
[19] , Homological mirror symmetry and torus fibrations 2001 203 263
[20] , Notes on ð´_{â}-algebras, ð´_{â}-categories and non-commutative geometry 2009 153 219
[21] Categorical resolution of singularities J. Algebra 2010 2977 3003
[22] Triangulated categories of singularities and D-branes in Landau-Ginzburg models Tr. Mat. Inst. Steklova 2004 240 262
[23] Matrix factorizations for nonaffine LG-models Math. Ann. 2012 95 108
[24] , Categorical mirror symmetry: the elliptic curve Adv. Theor. Math. Phys. 1998 443 470
[25] Negative ð¾-theory of derived categories Math. Z. 2006 97 134
[26] Fukaya categories and deformations 2002 351 360
[27] Fukaya categories and Picard-Lefschetz theory 2008
[28] Homological mirror symmetry for the genus two curve J. Algebraic Geom. 2011 727 769
[29] On the homological mirror symmetry conjecture for pairs of pants J. Differential Geom. 2011 271 367
[30] , , Mirror symmetry is ð-duality Nuclear Phys. B 1996 243 259
[31] The classification of triangulated subcategories Compositio Math. 1997 1 27
[32] Homological mirror symmetry for toric del Pezzo surfaces Comm. Math. Phys. 2006 71 85
[33] The negative ð¾-theory of normal surfaces Duke Math. J. 2001 1 35
Cité par Sources :