Localizing virtual cycles by cosections
Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1025-1050

Voir la notice de l'article provenant de la source American Mathematical Society

We show that a cosection of the obstruction sheaf of a perfect obstruction theory localizes the virtual cycle to the non-surjective locus of the cosection. We construct a localized Gysin map and localized virtual cycles. Various applications of this construction are discussed.
DOI : 10.1090/S0894-0347-2013-00768-7

Kiem, Young-Hoon 1 ; Li, Jun 2

1 Department of Mathematics and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea
2 Department of Mathematics, Stanford University, Stanford, California 94305
@article{10_1090_S0894_0347_2013_00768_7,
     author = {Kiem, Young-Hoon and Li, Jun},
     title = {Localizing virtual cycles by cosections},
     journal = {Journal of the American Mathematical Society},
     pages = {1025--1050},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00768-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00768-7/}
}
TY  - JOUR
AU  - Kiem, Young-Hoon
AU  - Li, Jun
TI  - Localizing virtual cycles by cosections
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 1025
EP  - 1050
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00768-7/
DO  - 10.1090/S0894-0347-2013-00768-7
ID  - 10_1090_S0894_0347_2013_00768_7
ER  - 
%0 Journal Article
%A Kiem, Young-Hoon
%A Li, Jun
%T Localizing virtual cycles by cosections
%J Journal of the American Mathematical Society
%D 2013
%P 1025-1050
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00768-7/
%R 10.1090/S0894-0347-2013-00768-7
%F 10_1090_S0894_0347_2013_00768_7
Kiem, Young-Hoon; Li, Jun. Localizing virtual cycles by cosections. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1025-1050. doi: 10.1090/S0894-0347-2013-00768-7

[1] Behrend, Kai Donaldson-Thomas type invariants via microlocal geometry Ann. of Math. (2) 2009 1307 1338

[2] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[3] Bryan, Jim, Leung, Naichung Conan The enumerative geometry of 𝐾3 surfaces and modular forms J. Amer. Math. Soc. 2000 371 410

[4] Bryan, Jim, Leung, Naichung Conan Generating functions for the number of curves on abelian surfaces Duke Math. J. 1999 311 328

[5] Chang, Huai-Liang, Li, Jun Gromov-Witten invariants of stable maps with fields Int. Math. Res. Not. IMRN 2012 4163 4217

[6] Donaldson, S. K. Yang-Mills invariants of four-manifolds 1990 5 40

[7] Dã¼Rr, Markus, Kabanov, Alexandre, Okonek, Christian Poincaré invariants Topology 2007 225 294

[8] Fulton, William Intersection theory 1998

[9] Faber, C., Pandharipande, R. Hodge integrals and Gromov-Witten theory Invent. Math. 2000 173 199

[10] Kiem, Young-Hoon, Li, Jun Low degree GW invariants of spin surfaces Pure Appl. Math. Q. 2011 1449 1475

[11] Kiem, Young-Hoon, Li, Jun Low degree GW invariants of surfaces II Sci. China Math. 2011 1679 1706

[12] Kresch, Andrew Cycle groups for Artin stacks Invent. Math. 1999 495 536

[13] Kim, Bumsig, Kresch, Andrew, Pantev, Tony Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee J. Pure Appl. Algebra 2003 127 136

[14] Laumon, Gã©Rard, Moret-Bailly, Laurent Champs algébriques 2000

[15] Lee, Junho Family Gromov-Witten invariants for Kähler surfaces Duke Math. J. 2004 209 233

[16] Lee, Junho Holomorphic 2-forms and vanishing theorems for Gromov-Witten invariants Canad. Math. Bull. 2009 87 94

[17] Lee, Junho, Parker, Thomas H. A structure theorem for the Gromov-Witten invariants of Kähler surfaces J. Differential Geom. 2007 483 513

[18] Li, Jun A note on enumerating rational curves in a 𝐾3 surface 2002 53 62

[19] Li, Jun, Li, Wei-Ping Two point extremal Gromov-Witten invariants of Hilbert schemes of points on surfaces Math. Ann. 2011 839 869

[20] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties J. Amer. Math. Soc. 1998 119 174

[21] Li, Jun, Tian, Gang Comparison of algebraic and symplectic Gromov-Witten invariants Asian J. Math. 1999 689 728

[22] Mather, John Notes on topological stability Bull. Amer. Math. Soc. (N.S.) 2012 475 506

[23] Maulik, D., Pandharipande, R. New calculations in Gromov-Witten theory Pure Appl. Math. Q. 2008 469 500

[24] Maulik, D., Pandharipande, R., Thomas, R. P. Curves on 𝐾3 surfaces and modular forms J. Topol. 2010 937 996

[25] Okounkov, A., Pandharipande, R. Quantum cohomology of the Hilbert scheme of points in the plane Invent. Math. 2010 523 557

[26] Vistoli, Angelo Intersection theory on algebraic stacks and on their moduli spaces Invent. Math. 1989 613 670

Cité par Sources :