Rank and genus of 3-manifolds
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 777-829

Voir la notice de l'article provenant de la source American Mathematical Society

We construct a counterexample to the Rank versus Genus Conjecture, i.e. a closed orientable hyperbolic 3-manifold with rank of its fundamental group smaller than its Heegaard genus. Moreover, we show that the discrepancy between rank and Heegaard genus can be arbitrarily large for hyperbolic 3-manifolds. We also construct toroidal such examples containing hyperbolic JSJ pieces.
DOI : 10.1090/S0894-0347-2013-00767-5

Li, Tao 1

1 Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
@article{10_1090_S0894_0347_2013_00767_5,
     author = {Li, Tao},
     title = {Rank and genus of 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {777--829},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00767-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00767-5/}
}
TY  - JOUR
AU  - Li, Tao
TI  - Rank and genus of 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 777
EP  - 829
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00767-5/
DO  - 10.1090/S0894-0347-2013-00767-5
ID  - 10_1090_S0894_0347_2013_00767_5
ER  - 
%0 Journal Article
%A Li, Tao
%T Rank and genus of 3-manifolds
%J Journal of the American Mathematical Society
%D 2013
%P 777-829
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00767-5/
%R 10.1090/S0894-0347-2013-00767-5
%F 10_1090_S0894_0347_2013_00767_5
Li, Tao. Rank and genus of 3-manifolds. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 777-829. doi: 10.1090/S0894-0347-2013-00767-5

[1] Bachman, David, Schleimer, Saul, Sedgwick, Eric Sweepouts of amalgamated 3-manifolds Algebr. Geom. Topol. 2006 171 194

[2] Boileau, M., Zieschang, H. Heegaard genus of closed orientable Seifert 3-manifolds Invent. Math. 1984 455 468

[3] Casson, A. J., Gordon, C. Mca. Reducing Heegaard splittings Topology Appl. 1987 275 283

[4] Haken, Wolfgang Some results on surfaces in 3-manifolds 1968 39 98

[5] Haken, Wolfgang Various aspects of the three-dimensional Poincaré problem 1970 140 152

[6] Hatcher, A. E. On the boundary curves of incompressible surfaces Pacific J. Math. 1982 373 377

[7] Hatcher, A., Thurston, W. Incompressible surfaces in 2-bridge knot complements Invent. Math. 1985 225 246

[8] Hempel, John 3-manifolds as viewed from the curve complex Topology 2001 631 657

[9] Kobayashi, Tsuyoshi Classification of unknotting tunnels for two bridge knots 1999 259 290

[10] Lackenby, Marc The Heegaard genus of amalgamated 3-manifolds Geom. Dedicata 2004 139 145

[11] Lackenby, Marc The asymptotic behaviour of Heegaard genus Math. Res. Lett. 2004 139 149

[12] Li, Tao Heegaard surfaces and measured laminations. I. The Waldhausen conjecture Invent. Math. 2007 135 177

[13] Li, Tao Heegaard surfaces and measured laminations. II. Non-Haken 3-manifolds J. Amer. Math. Soc. 2006 625 657

[14] Li, Tao Saddle tangencies and the distance of Heegaard splittings Algebr. Geom. Topol. 2007 1119 1134

[15] Li, Tao On the Heegaard splittings of amalgamated 3-manifolds 2007 157 190

[16] Li, Tao Heegaard surfaces and the distance of amalgamation Geom. Topol. 2010 1871 1919

[17] Lyndon, Roger C., Schupp, Paul E. Combinatorial group theory 2001

[18] Moriah, Yoav, Rubinstein, Hyam Heegaard structures of negatively curved 3-manifolds Comm. Anal. Geom. 1997 375 412

[19] Namazi, Hossein, Souto, Juan Heegaard splittings and pseudo-Anosov maps Geom. Funct. Anal. 2009 1195 1228

[20] Rieck, Yo’Av Heegaard structures of manifolds in the Dehn filling space Topology 2000 619 641

[21] Rieck, Yo’Av, Sedgwick, Eric Persistence of Heegaard structures under Dehn filling Topology Appl. 2001 41 53

[22] Scharlemann, Martin Local detection of strongly irreducible Heegaard splittings Topology Appl. 1998 135 147

[23] Scharlemann, Martin Proximity in the curve complex: boundary reduction and bicompressible surfaces Pacific J. Math. 2006 325 348

[24] Scharlemann, Martin Heegaard splittings of compact 3-manifolds 2002 921 953

[25] Scharlemann, Martin, Schultens, Jennifer The tunnel number of the sum of 𝑛 knots is at least 𝑛 Topology 1999 265 270

[26] Scharlemann, Martin, Tomova, Maggy Alternate Heegaard genus bounds distance Geom. Topol. 2006 593 617

[27] Scharlemann, Martin, Thompson, Abigail Thin position for 3-manifolds 1994 231 238

[28] Schultens, Jennifer The classification of Heegaard splittings for (compact orientable surface)×𝑆¹ Proc. London Math. Soc. (3) 1993 425 448

[29] Schultens, Jennifer, Weidman, Richard On the geometric and the algebraic rank of graph manifolds Pacific J. Math. 2007 481 510

[30] Shalen, Peter B. Hyperbolic volume, Heegaard genus and ranks of groups 2007 335 349

[31] Souto, Juan The rank of the fundamental group of certain hyperbolic 3-manifolds fibering over the circle 2008 505 518

[32] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381

[33] Waldhausen, Friedhelm On irreducible 3-manifolds which are sufficiently large Ann. of Math. (2) 1968 56 88

[34] Waldhausen, Friedhelm Some problems on 3-manifolds 1978 313 322

[35] Whitehead, J. H. C. On equivalent sets of elements in a free group Ann. of Math. (2) 1936 782 800

Cité par Sources :