The affine sieve
Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1085-1105 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We establish the main saturation conjecture connected with executing a Brun sieve in the setting of an orbit of a group of affine linear transformations. This is carried out under the condition that the Zariski closure of the group is Levi-semisimple. It is likely that this condition is also necessary for such saturation to hold.
DOI : 10.1090/S0894-0347-2013-00764-X

Salehi Golsefidy, Alireza  1   ; Sarnak, Peter  2

1 Department of Mathematics, University of California, San Diego, California 92093-0112
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
@article{10_1090_S0894_0347_2013_00764_X,
     author = {Salehi Golsefidy, Alireza and Sarnak, Peter},
     title = {The affine sieve},
     journal = {Journal of the American Mathematical Society},
     pages = {1085--1105},
     year = {2013},
     volume = {26},
     number = {4},
     doi = {10.1090/S0894-0347-2013-00764-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00764-X/}
}
TY  - JOUR
AU  - Salehi Golsefidy, Alireza
AU  - Sarnak, Peter
TI  - The affine sieve
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 1085
EP  - 1105
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00764-X/
DO  - 10.1090/S0894-0347-2013-00764-X
ID  - 10_1090_S0894_0347_2013_00764_X
ER  - 
%0 Journal Article
%A Salehi Golsefidy, Alireza
%A Sarnak, Peter
%T The affine sieve
%J Journal of the American Mathematical Society
%D 2013
%P 1085-1105
%V 26
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00764-X/
%R 10.1090/S0894-0347-2013-00764-X
%F 10_1090_S0894_0347_2013_00764_X
Salehi Golsefidy, Alireza; Sarnak, Peter. The affine sieve. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 1085-1105. doi: 10.1090/S0894-0347-2013-00764-X

[1] Atiyah, M. F., Macdonald, I. G. Introduction to commutative algebra 1969

[2] Becker, Thomas, Weispfenning, Volker Gröbner bases 1993

[3] Bourgain, Jean, Gamburd, Alex Uniform expansion bounds for Cayley graphs of 𝑆𝐿₂(𝔽_{𝕡}) Ann. of Math. (2) 2008 625 642

[4] Bourgain, Jean, Gamburd, Alex, Sarnak, Peter Affine linear sieve, expanders, and sum-product Invent. Math. 2010 559 644

[5] Breuillard, Emmanuel, Green, Ben, Tao, Terence Approximate subgroups of linear groups Geom. Funct. Anal. 2011 774 819

[6] Bugeaud, Yann, Luca, Florian, Mignotte, Maurice, Siksek, Samir On Fibonacci numbers with few prime divisors Proc. Japan Acad. Ser. A Math. Sci. 2005 17 20

[7] Chen, Jing Run On the representation of a larger even integer as the sum of a prime and the product of at most two primes Sci. Sinica 1973 157 176

[8] Fried, Michael D., Haran, Dan, Jarden, Moshe Effective counting of the points of definable sets over finite fields Israel J. Math. 1994 103 133

[9] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III Inst. Hautes Études Sci. Publ. Math. 1966 255

[10] Halberstam, H., Richert, H.-E. Sieve methods 1974

[11] Hardy, G. H., Wright, E. M. An introduction to the theory of numbers 1979

[12] Helfgott, H. A. Growth and generation in 𝑆𝐿₂(ℤ/𝕡ℤ) Ann. of Math. (2) 2008 601 623

[13] Lang, Serge, Weil, André Number of points of varieties in finite fields Amer. J. Math. 1954 819 827

[14] Mostow, G. D. Self-adjoint groups Ann. of Math. (2) 1955 44 55

[15] Nevo, Amos, Sarnak, Peter Prime and almost prime integral points on principal homogeneous spaces Acta Math. 2010 361 402

[16] Nori, Madhav V. On subgroups of 𝐺𝐿_{𝑛}(𝐹_{𝑝}) Invent. Math. 1987 257 275

[17] Platonov, Vladimir, Rapinchuk, Andrei Algebraic groups and number theory 1994

[18] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[19] Golsefidy, A. Salehi, Varjú, Péter P. Expansion in perfect groups Geom. Funct. Anal. 2012 1832 1891

[20] Schinzel, A. Polynomials with special regard to reducibility 2000

[21] Schmidt, Wolfgang M. A lower bound for the number of solutions of equations over finite fields J. Number Theory 1974 448 480

[22] Springer, T. A. Linear algebraic groups 1998

[23] Varjú, Péter P. Expansion in 𝑆𝐿_{𝑑}(𝒪_{𝒦}/ℐ), ℐ square-free J. Eur. Math. Soc. (JEMS) 2012 273 305

Cité par Sources :