Sobolev extension by linear operators
Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 69-145

Voir la notice de l'article provenant de la source American Mathematical Society

Let $L^{m,p}(\mathbb {R}^n)$ be the Sobolev space of functions with $m^{\mathrm {th}}$ derivatives lying in $L^p(\mathbb {R}^n)$. Assume that $n p \infty$. For $E \subset \mathbb {R}^n$, let $L^{m,p}(E)$ denote the space of restrictions to $E$ of functions in $L^{m,p}(\mathbb {R}^n)$. We show that there exists a bounded linear map $T : L^{m,p}(E) \rightarrow L^{m,p}(\mathbb {R}^n)$ such that, for any $f \in L^{m,p}(E)$, we have $Tf = f$ on $E$. We also give a formula for the order of magnitude of $\|f\|_{L^{m,p}(E)}$ for a given $f : E \rightarrow \mathbb {R}$ when $E$ is finite.
DOI : 10.1090/S0894-0347-2013-00763-8

Fefferman, Charles 1 ; Israel, Arie 2 ; Luli, Garving 3

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544
2 Department of Mathematics, New York University-Courant Institute, Warren Weaver Hall, 251 Mercer Street, New York, NY 10012-1185
3 Department of Mathematics, Yale University, New Haven, CT 06520
@article{10_1090_S0894_0347_2013_00763_8,
     author = {Fefferman, Charles and Israel, Arie and Luli, Garving},
     title = {Sobolev extension by linear operators},
     journal = {Journal of the American Mathematical Society},
     pages = {69--145},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00763-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00763-8/}
}
TY  - JOUR
AU  - Fefferman, Charles
AU  - Israel, Arie
AU  - Luli, Garving
TI  - Sobolev extension by linear operators
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 69
EP  - 145
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00763-8/
DO  - 10.1090/S0894-0347-2013-00763-8
ID  - 10_1090_S0894_0347_2013_00763_8
ER  - 
%0 Journal Article
%A Fefferman, Charles
%A Israel, Arie
%A Luli, Garving
%T Sobolev extension by linear operators
%J Journal of the American Mathematical Society
%D 2014
%P 69-145
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00763-8/
%R 10.1090/S0894-0347-2013-00763-8
%F 10_1090_S0894_0347_2013_00763_8
Fefferman, Charles; Israel, Arie; Luli, Garving. Sobolev extension by linear operators. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 69-145. doi: 10.1090/S0894-0347-2013-00763-8

[1] Batson, Joshua D., Spielman, Daniel A., Srivastava, Nikhil Twice-Ramanujan sparsifiers 2009 255 262

[2] Bierstone, Edward, Milman, Pierre D., Pawå‚Ucki, Wieså‚Aw Differentiable functions defined in closed sets. A problem of Whitney Invent. Math. 2003 329 352

[3] Brudnyi, Yuri, Shvartsman, Pavel Generalizations of Whitney’s extension theorem Internat. Math. Res. Notices 1994

[4] Brudnyi, Yuri, Shvartsman, Pavel The Whitney problem of existence of a linear extension operator J. Geom. Anal. 1997 515 574

[5] Callahan, Paul B., Kosaraju, S. Rao A decomposition of multidimensional point sets with applications to 𝑘-nearest-neighbors and 𝑛-body potential fields J. Assoc. Comput. Mach. 1995 67 90

[6] Dunford, Nelson, Schwartz, Jacob T. Linear operators. Part I 1988

[7] Evans, Lawrence C. Partial differential equations 1998

[8] Fefferman, Charles L. A sharp form of Whitney’s extension theorem Ann. of Math. (2) 2005 509 577

[9] Fefferman, Charles Whitney’s extension problem for 𝐶^{𝑚} Ann. of Math. (2) 2006 313 359

[10] Fefferman, Charles 𝐶^{𝑚} extension by linear operators Ann. of Math. (2) 2007 779 835

[11] Fefferman, Charles The structure of linear extension operators for 𝐶^{𝑚} Rev. Mat. Iberoam. 2007 269 280

[12] Fefferman, Charles Fitting a 𝐶^{𝑚}-smooth function to data. III Ann. of Math. (2) 2009 427 441

[13] Fefferman, Charles, Israel, Arie The jet of an interpolant on a finite set Rev. Mat. Iberoam. 2011 355 360

[14] Fefferman, Charles, Klartag, Bo’Az Fitting a 𝐶^{𝑚}-smooth function to data. I Ann. of Math. (2) 2009 315 346

[15] Fefferman, Charles, Klartag, Bo’Az Fitting a 𝐶^{𝑚}-smooth function to data. II Rev. Mat. Iberoam. 2009 49 273

[16] Glaeser, Georges Étude de quelques algèbres tayloriennes J. Analyse Math. 1958

[17] Luli, Garving K. 𝐶^{𝑚,𝜔} extension by bounded-depth linear operators Adv. Math. 2010 1927 2021

[18] Shvartsman, P. Sobolev 𝑊¹_{𝑝}-spaces on closed subsets of 𝑅ⁿ Adv. Math. 2009 1842 1922

[19] Spielman, Daniel A., Srivastava, Nikhil Graph sparsification by effective resistances 2008 563 568

[20] Spielman, Daniel A., Teng, Shang-Hua Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems 2004 81 90

[21] Whitney, Hassler Analytic extensions of differentiable functions defined in closed sets Trans. Amer. Math. Soc. 1934 63 89

[22] Whitney, Hassler Differentiable functions defined in closed sets. I Trans. Amer. Math. Soc. 1934 369 387

[23] Whitney, Hassler Functions differentiable on the boundaries of regions Ann. of Math. (2) 1934 482 485

Cité par Sources :