Voir la notice de l'article provenant de la source American Mathematical Society
Fefferman, Charles 1 ; Israel, Arie 2 ; Luli, Garving 3
@article{10_1090_S0894_0347_2013_00763_8,
     author = {Fefferman, Charles and Israel, Arie and Luli, Garving},
     title = {Sobolev extension by linear operators},
     journal = {Journal of the American Mathematical Society},
     pages = {69--145},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00763-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00763-8/}
}
                      
                      
                    TY - JOUR AU - Fefferman, Charles AU - Israel, Arie AU - Luli, Garving TI - Sobolev extension by linear operators JO - Journal of the American Mathematical Society PY - 2014 SP - 69 EP - 145 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00763-8/ DO - 10.1090/S0894-0347-2013-00763-8 ID - 10_1090_S0894_0347_2013_00763_8 ER -
%0 Journal Article %A Fefferman, Charles %A Israel, Arie %A Luli, Garving %T Sobolev extension by linear operators %J Journal of the American Mathematical Society %D 2014 %P 69-145 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00763-8/ %R 10.1090/S0894-0347-2013-00763-8 %F 10_1090_S0894_0347_2013_00763_8
Fefferman, Charles; Israel, Arie; Luli, Garving. Sobolev extension by linear operators. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 69-145. doi: 10.1090/S0894-0347-2013-00763-8
[1] , , Twice-Ramanujan sparsifiers 2009 255 262
[2] , , Differentiable functions defined in closed sets. A problem of Whitney Invent. Math. 2003 329 352
[3] , Generalizations of Whitneyâs extension theorem Internat. Math. Res. Notices 1994
[4] , The Whitney problem of existence of a linear extension operator J. Geom. Anal. 1997 515 574
[5] , A decomposition of multidimensional point sets with applications to ð-nearest-neighbors and ð-body potential fields J. Assoc. Comput. Mach. 1995 67 90
[6] , Linear operators. Part I 1988
[7] Partial differential equations 1998
[8] A sharp form of Whitneyâs extension theorem Ann. of Math. (2) 2005 509 577
[9] Whitneyâs extension problem for ð¶^{ð} Ann. of Math. (2) 2006 313 359
[10] ð¶^{ð} extension by linear operators Ann. of Math. (2) 2007 779 835
[11] The structure of linear extension operators for ð¶^{ð} Rev. Mat. Iberoam. 2007 269 280
[12] Fitting a ð¶^{ð}-smooth function to data. III Ann. of Math. (2) 2009 427 441
[13] , The jet of an interpolant on a finite set Rev. Mat. Iberoam. 2011 355 360
[14] , Fitting a ð¶^{ð}-smooth function to data. I Ann. of Math. (2) 2009 315 346
[15] , Fitting a ð¶^{ð}-smooth function to data. II Rev. Mat. Iberoam. 2009 49 273
[16] Ãtude de quelques algèbres tayloriennes J. Analyse Math. 1958
[17] ð¶^{ð,ð} extension by bounded-depth linear operators Adv. Math. 2010 1927 2021
[18] Sobolev ð¹_{ð}-spaces on closed subsets of ð â¿ Adv. Math. 2009 1842 1922
[19] , Graph sparsification by effective resistances 2008 563 568
[20] , Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems 2004 81 90
[21] Analytic extensions of differentiable functions defined in closed sets Trans. Amer. Math. Soc. 1934 63 89
[22] Differentiable functions defined in closed sets. I Trans. Amer. Math. Soc. 1934 369 387
[23] Functions differentiable on the boundaries of regions Ann. of Math. (2) 1934 482 485
Cité par Sources :
